Computational Learning Theory

Pardis Noorzad

Department of Computer Engineering and IT Amirkabir University of Technology

Ordibehesht 1390

Introduction

- For the analysis of data structures and algorithms and their limits we have:
 - Computational complexity theory
 - and analysis of **time** and **space** complexity
 - e.g. Dijkstra's algorithm or Bellman-Ford?
- For the analysis of ML algorithms, there are other questions we need to answer:
 - Computational learning theory
 - Statistical learning theory

Computational learning theory (Wikipedia)

• **Probably approximately correct learning** (PAC learning) --Leslie Valiant

- inspired boosting

- VC theory --Vladimir Vapnik – led to SVMs
- Bayesian inference -- Thomas Bayes
- Algorithmic learning theory --E. M. Gold
- Online machine learning --Nick Littlestone

Today

- PAC model of learning
 - -sample complexity,
 - -computational complexity
- VC dimension

-hypothesis space complexity

• SRM

-model estimation

• examples throughout ...

- "Probably learning an approximately correct hypothesis"
- Problem setting:
 - learn an unknown target function \boldsymbol{c}

 $c:X \to \{0,1\}, \qquad c \in C$

- given, training examples $\{x_i, c(x_i)\}$, of this target function
 - $x_i \in X$ i.i.d. according to an unknown but stationary distribution \mathcal{D}
- given, a space of candidate hypothesis H

PAC learning: measures of error

• **'true error'** of hypothesis f w.r.t. target concept c, and instance distribution \mathcal{D} $\operatorname{error}_{\mathcal{D}}(f) = \operatorname{Pr}_{x \sim \mathcal{D}}[c(x) \neq f(x)]$

– the probability that f will misclassify an instance drawn at random according to $\mathcal D$

- **'training error'**: $\operatorname{error}_D(f)$
 - fraction of training samples misclassified by f
 - this is the error that can be observed by our learner L

PAC-learnability: definition

- For concept class *C* to be PAC-learnable by *L*
 - we will require that error be bounded by some constant ϵ
 - and it's probability of failure be bounded by some constant δ

Definition: Consider a concept class C defined over a set of instances X of length n and a learner L using hypothesis space H. C is **PAC-learnable** by L using H if for all $c \in C$, distributions \mathcal{D} over X, ϵ such that $0 < \epsilon < 1/2$, and δ such that $0 < \delta < 1/2$, learner L will with probability at least $(1 - \delta)$ output a hypothesis $h \in H$ such that $error_{\mathcal{D}}(h) \leq \epsilon$, in time that is polynomial in $1/\epsilon$, $1/\delta$, n, and size(c).

Sample complexity

- For finite hypothesis spaces $|H| < \infty$
 - for a consistent learner
 - for an agnostic learner
- For infinite hypothesis spaces
 - this is where VC dimension comes in
- Our analysis here is **worst-case**, because we demand that learner be general enough to learn any target concept $c \in C$ regardless of the distribution of training samples D

Sample complexity: consistent finite |*H*|

- First a reminder of **version space**:
 - the set of all hypotheses that correctly classify the training samples
 - $VS_{H,D} = \{ f \in H | (\forall \langle x, c(x) \rangle \in D) (f(x) = c(x)) \}$
- A consistent learner outputs a hypothesis belonging to VS
- To bound the number of samples needed by a consistent learner, it is enough to bound the number of samples needed to assure that VS contains no unacceptable *f*

Sample complexity: consistent finite |H| (Haussler, 1988)

- The version space is ϵ -exhausted when all consistent hypotheses have true error less than ϵ
- So it bounds the probability that m training examples will fail to eliminate hypotheses with true error greater than ϵ

 $|H|e^{-\epsilon m}$

Sample complexity: consistent finite |H| (Haussler, 1988)

• Finally! we can determine the number of training samples required to reduce this probability below some desired δ

$$|H|e^{-\epsilon m} \leq \delta$$
$$m \geq \frac{1}{\epsilon} \left(\ln|H| + \ln(\frac{1}{\delta}) \right)$$

• this number of training samples is enough to assure that any consistent hypothesis will be probably $(1 - \delta)$ approximately (ϵ) correct

Sample complexity: inconsistent finite |*H*|

- What if *H* does not contain target concept *c*?
- We want learner to output $f \in H$ that has minimum training error
- Define f_{best} as the hypothesis from H with minimum training error
- How many training samples are needed to ensure that

 $\operatorname{error}_{\mathcal{D}}(f_{\operatorname{best}}) \leq \epsilon + \operatorname{error}_{D}(f_{\operatorname{best}})$

Sample complexity: inconsistent finite |H| (Hoeffding bounds, 1963)

- For a single hypothesis to have a misleading training error
 Pr[error_D(f) > ε + error_D(f)] ≤ e^{-2mε²}
- We want to assure that the best hypothesis has an error bounded this way
 - so consider that any one of them could have a large error $Pr[(\exists f \in H)error_{\mathcal{D}}(f) > \epsilon + error_{D}(f)]$ $\leq |H|e^{-2m\epsilon^{2}}$

Sample complexity: inconsistent finite |H| (Hoeffding bounds, 1963)

• So if do the stuff we did before, call that probability δ , we can find a bound for the number of samples needed to hold δ to some desired value

$$m \ge \frac{1}{2\epsilon^2} \left(\ln|H| + \ln(1/\delta) \right)$$

Sample complexity: example

- C: conjunction of n boolean literals
- is C PAC-learnable?
- So $|H| = 3^n$ and

$$m \ge \frac{1}{\epsilon} \left(n \ln 3 + \ln(1/\delta) \right)$$
$$m = \frac{1}{.1} \left(10 \ln 3 + \ln(1/\delta) \right) = 140$$

- m grows linearly in n, ϵ , and logarithmically in $\frac{1}{\delta}$
- So as long as *L* requires no more than polynomial computation per training sample, then total computation required will be polynomial as well.

Sample complexity: infinite |H|

- using |H| leads to weak bounds
- and in case of $|H| = \infty$ we cannot apply it at all
- so we define a second measure of complexity called VC dimension
- in many cases it provides tighter bounds
- note (I will explain later): $VC(H) \le \log_2 |H|$

VC theory

(V. Vapnik and A. Chervonenkis, 1960-1990)

- VC dimension
- Structural risk minimization

VC dimension

(V.Vapnik and A. Chervonenkis, 1968, 1971)

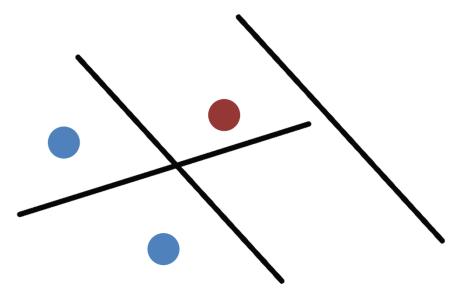
- First we'll define **shattering**
- Consider hypotheses for the two-class pattern recognition problem:

 $f(\mathbf{x}, \alpha) \in \{-1, 1\} \ \forall \mathbf{x}, \alpha$

- Now, if for a set of N points that can be labeled in all 2^N ways (either + or -),
 - a member of the set $\{f(\alpha)\}$ can be found which correctly assigns those labels...
 - we say, that set of points is shattered by $\{f(\alpha)\}$

VC dimension: example

three points in \mathbb{R}^2 , shattered by oriented lines



- For our purposes, it is enough to find one set of three points that can be shattered
- It is not necessary to be able to shatter **every possible set of three points** in 2 dimensions

VC dimension: continued

- The maximum number of points that can be shattered by $H = \{f(\alpha)\}$ is called
 - VC dimension of H
 - and denoted as VC(H)
- So the VC dimension of the set of oriented lines in \mathbb{R}^2 is three (last example)
- VC(H) is a measure of the **capacity** of the hypothesis class H
 - the higher the capacity, the higher the ability of the machine to learn any training set without error

VC dimension: intuition

- High capacity:
 - not a tree, b/c different from any tree I have seen (e.g. different number of leaves)
- Low capacity:
 - if it's green then it's a tree

Low VC dimension

- VC dimension is pessimistic
- If using **oriented lines** as our hypothesis class

– we can only learn datasets with 3 points!

- This is b/c VC dimension is computed independent of distribution of instances
 - In reality, near neighbors have same labels
 - So no need to worry about all possible labelings
- There are a lot of datasets containing more points that are learnable by a line!

Infinite VC dimension

- Lookup table has infinite VC dimension
- But so does the nearest neighbor classifier
 - b/c any number of points, labeled arbitrarily (w/o overlaps), will be successfully learned
- But it performs well...
- So infinite capacity **does not guarantee** poor generalization performance

Examples of calculating VC dimension

- So we saw that the VC dimension of the set of oriented lines in \mathbb{R}^2 is 3
- Generally, the VC dimension of the set of oriented hyperplanes in \mathbb{R}^n is n + 1



Examples of calculating VC dimension: continued

- Let K be a positive kernel which corresponds to a minimal embedding space \mathcal{H} .
- Then the VC dimension of the corresponding support vector machine is dim(H) + 1.
- Proof...

VC dimension of SVMs with polynomial kernels

- e.g. $k(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle^2$
- if x and y are 2-dimensional:

 $k(\mathbf{x}, \mathbf{y}) = (x_1y_1 + x_2y_2)^2 = x^2y^2 + 2x_1y_1x_2y_2 + x^2y^2$

- the feature space is 3-dimensional
- and the VC dimension of an SVM with this kernel is 3 + 1 = 4
- in general, for a space with dimension d, the dimension of the embedding space for homogeneous polynomial kernels is

$$\binom{d+p-1}{p}$$

Sample complexity and the VC dimension (Blumer et al., 1989)

$$m \geq \frac{1}{\epsilon} \left(4 \log_2 \left(\frac{2}{\delta} \right) + 8h \log_2 \left(\frac{13}{\epsilon} \right) \right)$$

• where h = VC(H)

Structural risk minimization (V. Vapnik and A. Chervonenkis, 1974)

- A function that fits training data and minimizes VC dimension

 will generalize well
- SRM provides a quantitative characterization of the **tradeoff** between
 - the complexity of the approximating functions,
 - and the quality of fitting the training data
- First, we will talk about a certain bound..

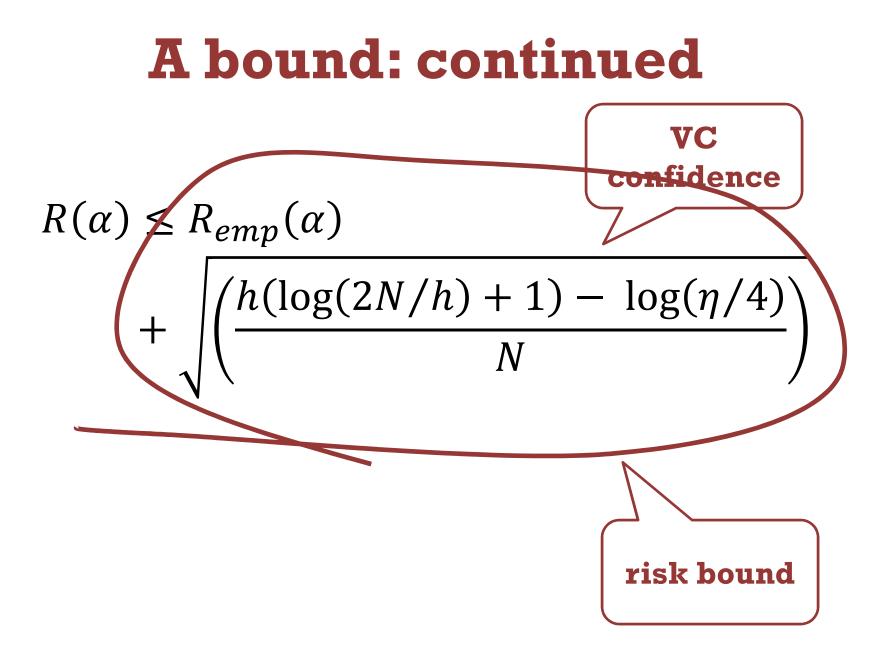
A bound

- on the generalization performance of a pattern recognition learning machine
 - from Burges, 1998

true mean error/ actual risk $R(\alpha) = \int \frac{1}{2} |y - f(\mathbf{x}, \alpha)| dP(\mathbf{x}, y)$ $R(\alpha) = \int \frac{1}{2} |y - f(\mathbf{x}, \alpha)| p(\mathbf{x}, y) d\mathbf{x} dy$

$$R_{emp}(\alpha) = \frac{1}{2N} \sum_{i=1}^{N} |y_i - f(\mathbf{x}_i, \alpha)|$$

empirical
risk

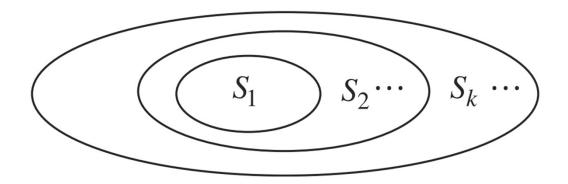


SRM: continued

- To minimize true error (actual risk), both empirical risk and VC confidence term should be minimized
- The VC confidence term depends on the chosen class of functions
- Whereas empirical risk and actual risk depend on the **one particular function** chosen for training

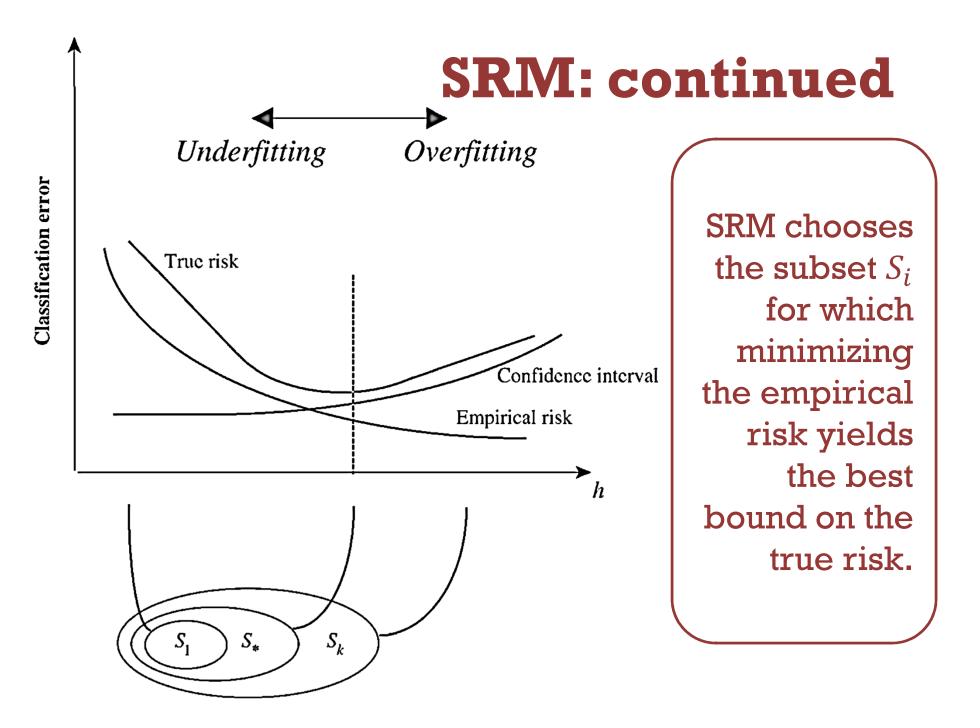
SRM: continued

- The VC dimension h doesn't vary smoothly since it is an integer
- Therefore the entire class of functions is structured into nested subsets (ordered by *h*, *h* < ∞) h₁ < h₂ < ··· < h_k < ···.



SRM: continued

- For a given data set, optimal model estimation with SRM consists of the following steps:
 - select an element of a structure (model selection)
 - 2. estimate the model from this element (statistical parameter estimation)



Support vector machine (Vapnik, 1982)

- Does SVM implement the SRM principle?
- We have shown that the VC dimension of a nonlinear SVM is $\dim(\mathcal{H}) + 1$, where $\dim(\mathcal{H})$ is the dimension of space \mathcal{H}
- and equal to $\binom{d_L + p 1}{p}$ and ∞ for a -degree polynomial and RBF kernel, respectively So SVM can have very high VC dimension
- But, it is possible to prove that SVM training actually minimizes the VC dimension and empirical error at the same time.

Support vector machine (Vapnik, 1995)

- Given *m* data points in \mathbb{R}^n , $||x_i|| \leq R$
- H_{γ} : set of linear classifiers in \mathbb{R}^n with margin γ on X
- Then

$$\operatorname{VC}(H) \le \min\left\{n, \left[\frac{4R^2}{\gamma^2}\right]\right\}$$

- This means that hypothesis spaces with large margin have small VC dimension
- (Burges, 1998) claimed that this bound is for a gap-tolerant classifier but not the SVM classifier...

What we said today

- PAC bounds
 - only apply to finite hypothesis spaces
- VC dimension is a measure of complexity
 - can be applied for infinite hypothesis spaces
- Training neural networks uses only ERM, whereas SVMs use SRM
- Large margins imply small VC dimension
 ③

References

- 1. Machine Learning by T. M. Mitchell
- 2. A Tutorial on Support Vector Machines for Pattern Recognition by C. J. C. Burges
- 3. <u>http://www.svms.org/</u>

