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Introduction

* For the analysis of data structures and
algorithms and their limits we have:

— Computational complexity theory
— and analysis of time and space complexity
— e.g. Dijjkstra’s algorithm or Bellman-Ford?

* For the analysis of ML algorithms, there
are other questions we need to answer:
— Computational learning theory
— Statistical learning theory



Computational learning theory
(Wikipedia)

Probably approximately correct learning
(PAC learning) --Leslie Valiant

— 1nspired boosting

VC theory --Vladimir Vapnik

— led to SV NMs

Bayesian inference --Thomas Bayes
Algorithmic learning theory --E. M. Gold

Online machine learning --Nick
Littlestone



Today

PAC model of learning
—sample complexity,
—computational complexity

VC dimension
—hypothesis space complexity

SRM
—model estimation

examples throughout ...



PAC learning

(L. Valiant, 1984)

* “Probably learning an approximately
correct hypothesis”

* Problem setting:
— learn an unknown target function c
c:X - {0,1}, ceC
— given, training examples {x;, c(x;)}, of this
target function

* x; € X 1.1.d. according to an unknown but
stationary distribution D

— given, a space of candidate hypothesis H



PAC learning: measures of error

* ‘true error’ of hypothesis f w.r.t. target
concept ¢, and instance distribution D
errory (f) = Pryplc(x) # f(x)]
— the probability that f will misclassify an
instance drawn at random according to D
» ‘training exrox’: errorp(f)
— fraction of training samples misclassified by

f

— this 1s the error that can be observed by our
learner L



PAC-learnability: definition

* For concept class C to be PAC-learnable
by L

— we will require that error be bounded by
some constant €

— and it’s probability of failure be bounded by
some constant 0

Definition: Consider a concept class C defined over a set of instances X of length

n and a learner L using hypothesis space H. C is PAC-learnable by L using H
if for all ¢ € C, distributions D over X, € such that 0 < ¢ that

0 < 8 < 1/2, leammer L will with probability at least (1 — §) output a hypothesi

h € H such that errorp(h) < ¢, in time that is polynomial in 1/e, 1/, n, and
size(c).




Sample complexity

 For finite hypothesis spaces |H| < o
— for a consistent learner
— for an agnostic learner

» For infinite hypothesis spaces
— this is where VC dimension comes in

* Our analysis here 1s worst-case, because
we demand that learner be general enough
to learn any target concept ¢ € C regardless
of the distribution of training samples D



Sample complexity: consistent finite |H|

e First a reminder of version space:

— the set of all hypotheses that correctly classify
the training samples

VSup ={f € H|(V{x,c(x)) € D)(f(x) = c(x))}

A consistent learner outputs a hypothesis
belonging to VS

 To bound the number of samples needed
by a consistent learner, it is enough to
bound the number of samples needed to
assure that VS contains no unacceptable f



Sample complexity: consistent finite |H|
(Haussler, 1988)

* The version space is e—exhausted when

all consistent hypotheses have true error
less than e

So 1t bounds the probability that m training

examples will fail to eliminate hypotheses
with true error greater than €

|H|e—6m



Sample complexity: consistent finite |H|
(Haussler, 1988)

* Finally! we can determine the number of
training samples required to reduce this
probability below some desired §

|Hle™ ™ < 6

m > %(lanl + 1n(1/5))

* this number of training samples is enough
to assure that any consistent hypothesis will
be probably (1 — 0) approximately (¢)
correct



Sample complexity: inconsistent finite |H|

What if H does not contain target concept
c?

We want learner to output f € H that has
minimum training error

Define fi,0t as the hypothesis from H with
minimum training error

How many training samples are needed
to ensure that

errorp (fpest) < € + errorp (fpest)



Sample complexity: inconsistent finite |H|
(Hoeffding bounds, 1963)

* For a single hypothesis to have a
misleading training error

Prlerrorp(f) > € + errorp(f) | < o —2me?

« We want to assure that the best hypothesis
has an error bounded this way

— so consider that any one of them could have a
large error

Pr|(3f € H)errorp(f) > € + errorp(f) |
< |H|e~2me”



Sample complexity: inconsistent finite |H|
(Hoeffding bounds, 1963)

 So if do the stuif we did before, call that
probability §, we can find a bound for the
number of samples needed to hold ¢ to
some desired value

1
m > Z—EZ(InIHl +1In(1/p))




Sample complexity: example

* (:conjunction of n boolean literals
* 1s C PAC-learnable?
« So|H| = 3"and

m > %(nln 3+ ln(1/5))

1
m = I(101n 3+In(1/ 5)) = 140

*m grows linearly in n, €, and logarithmically in
/s
* So as long as L requires no more than polynomial

computation per training sample, then total
computation required will be polynomial as well.



Sample complexity: infinite |H|

using |H| leads to weak bounds

and in case of |H| = oo we cannot apply it
at all

so we define a second measure of
complexity called VC dimension

In many cases 1t provides tighter bounds

note (I will explain later):
VC(H) < log, |H|



VC theory

(V.Vapnik and A. Chervonenkis, 1960-1990)

e VC dimension
e Structural risk minimization



VC dimension
(V.Vapnik and A. Chervonenkis, 1968, 1971)

* First we’ll define shattering

* Consider hypotheses for the two-class
pattern recognition problem:

fx,a) e{—1,1} VX,
 Now, if for a set of N points that can be

labeled in all 2" ways (either + or —),

— a member of the set {f (@)} can be found which
correctly assigns those labels...

— we say, that set of points is shattered by {f (a)}



VC dimension: example
three points in R?, shattered by oriented lines

* For our purposes, it is enough to find one set of
three points that can be shattered

* It is not necessary to be able to shatter every
possible set of three points in 2 dimensions



VC dimension: continued

e The maximum number of points that can
be shattered by H = {f(a)}is called
— VC dimension of H
— and denoted as VC(H)

e So the VC dimension of the set of oriented
lines in R? is three (last example)

 VC(H) is a measure of the capacity of the
hypothesis class H
— the higher the capacity, the higher the ability of

the machine to learn any training set without
error



VC dimension: intuition

* High capacity:
— not a tree, b/c different from any tree I have
seen (e.qg. different number of leaves)

* Low capacity:
—if it’s green then it’s a tree




Low VC dimension

VC dimension is pessimistic

If using oriented lines as our hypothesis
class

— we can only learn datasets with 3 points!

This is b/c VC dimension is computed
independent of distribution of instances

— In reality, near neighbors have same labels

— S50 no need to worry about all possible labelings

There are a lot of datasets containing more
points that are learnable by a linel



Infinite VC dimension

Lookup table has infinite VC dimension

But so does the nearest neighbor
classifier

— b/c any number of points, labeled arbitrarily
(w/o overlaps), will be successfully learned

But it performs well...

So 1nfinite capacity does not guarantee
poor generalization performance



Examples of calculating VC dimension

e So we saw that the VC dimension of the
set of oriented lines in R? is 3

* Generally, the VC dimension of the set of
oriented hyperplanesin R"isn + 1

I



Examples of calculating VC dimension:
continued

* Let K be a positive kernel which
corresponds to a minimal embedding
space H.

e Then the VC dimension of the

corresponding support vector machine
is dim(H) + 1.

 Proof...



VC dimension of SVIMs with polynomial
kernels

c e.g.k(xy) = (x,y)?

* 1f X and y are 2-dimensional:

k(X,y) = (x1y1 + x2Y2)% = x%y° + 211 %), + x%y?
— the feature space is 3-dimensional

— and the VC dimension of an SVM with this
kernelis3+1 =4

e in general, for a space with dimension d, the
dimension of the embedding space for
homogeneous polynomial kernels is

()



Sample complexity and the VC dimension
(Blumer et al., 1989)

m > %(4 log, (2/5) + 8hlog2(13/6))

 where h = VC(H)



Structural risk minimization
(V.Vapnik and A. Chervonenkis, 1974)

e A function that fits training data and
minimizes VC dimension

— will generalize well
 SRM provides a quantitative
characterization of the tradeoff between

— the complexity of the approximating
functions,

— and the quality of fitting the training data
 First, we will talk about a certain bound..



A bound

* on the generalization performance of a pattern
recognition learning machine

— from Burges, 1998

mean
exroxr/
actual

\_ risk )

1
(" true &R(a) — f§|y — f(x,a)|dP(X,y)

1
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A bound: continued

Remp (a)

<h(log(2N/h) + 1) — log(n/4)
N

@bound ]




SRIM: continued

* To minimize true error (actual risk), both
empirical risk and VC confidence term
should be minimized

 The VC confidence term depends on the
chosen class of functions

» Whereas empirical risk and actual risk
depend on the one particular function
chosen for training



SRIM: continued

« The VC dimension h doesn’t vary
smoothly since it is an integer

« Therefore the entire class of functions is
structured into nested subsets (ordered

Pyhh<®)  p<mp<- <<




SRIM: continued

* For a given data set, optimal model
estimation with SRM consists of the
following steps:

1. select an element of a structure (model
selection)

2. estimate the model from this element
(statistical parameter estimation)



Classification error

Underfitting

Truc risk

<

Overfitting

\\Empirical risk

>

SBp

Aﬁdcncc intcrval
S

h

>SRM: continued

4 )

SRM chooses
the subset S;
for which
minimizing
the empirical
risk yields
the best
bound on the
true risk.

N J




Support vector machine
(Vapnik, 1982)

Does SVM implement the SRM principle?

We have shown that the VC dimension of a
nonlinear SVM is dim(H ) + 1, where dim(H) is
the dimension of space H

(dL +p — 1)
. P .
polynomial and RBF kernel, respectively

— 50 SVM can have very high VC dimension

But, it is possible to prove that SVM training
actually minimizes the VC dimension and
empirical error at the same time.

and equal to and oo for a —degree



Support vector machine
(Vapnik, 1995)

Given m data points in R", ||x;|| < R

H,:set of linear classifiers in R" with margin
yonX

Then

| 4R*
VC(H) < minin, 7
This means that hypothesis spaces with
large margin have small VC dimension

(Burges, 1998) claimed that this bound is for
a gap-tolerant classifier but not the SVM
classifier...




What we said today

PAC bounds
— only apply to finite hypothesis spaces

VC dimension is a measure of
complexity
— can be applied for infinite hypothesis spaces

Training neural networks uses only ERWM,
whereas SVMs use SRM

Large margins imply small VC dimension

©
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