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Introduction 

• For the analysis of data structures and 
algorithms and their limits we have: 

– Computational complexity theory 

– and analysis of  time and space complexity 

– e.g. Dijkstra’s algorithm or Bellman-Ford? 

• For the analysis of ML algorithms, there 
are other questions we need to answer: 

– Computational  learning theory 

– Statistical learning theory 

 



Computational learning theory 
(Wikipedia) 

• Probably approximately correct learning 
(PAC learning) --Leslie Valiant 

– inspired boosting 

• VC theory --Vladimir Vapnik 

– led to SVMs 

• Bayesian inference --Thomas Bayes 

• Algorithmic learning theory --E. M. Gold 

• Online machine learning --Nick 
Littlestone 

 



Today 

• PAC model of learning 

– sample complexity,  

– computational complexity 

• VC dimension 

– hypothesis space complexity 

• SRM 

–model estimation 

• examples throughout … 



PAC learning 
(L. Valiant, 1984) 

• “Probably learning an approximately 
correct hypothesis” 

• Problem setting:  

– learn an unknown target function � 
�: �	 → 0,1 , � ∈ 
 

– given, training examples {� , �(�)}, of this 
target function 

• � ∈ �	i.i.d. according to an unknown but 
stationary distribution � 

– given, a space of candidate hypothesis � 



PAC learning: measures of error 

• ‘true error’ of hypothesis � w.r.t. target 
concept �, and instance distribution � 

error� � = Pr�~�[� � ≠ � � ] 
– the probability that � will misclassify an 
instance drawn at random according to � 

• ‘training error’: error� �  

– fraction of training samples misclassified by 
� 

– this is the error that can be observed by our 
learner � 
 

 



PAC-learnability: definition 

• For concept class 
 to be PAC-learnable 
by � 
– we will require that error be bounded by 

some constant    
– and it’s probability of failure be bounded by 

some constant ! 
 



Sample complexity 

• For finite hypothesis spaces � < ∞ 

– for a consistent learner 

– for an agnostic learner 

• For infinite hypothesis spaces 

– this is where VC dimension comes in  

 

• Our analysis here is worst-case, because 
we demand that learner be general enough 
to learn any target concept � ∈ 
 regardless 
of the distribution of training samples � 



Sample complexity: consistent finite |�| 
• First a reminder of version space: 

– the set of all hypotheses that correctly classify 
the training samples 

VS',� = {� ∈ �|(∀ �, � � ∈ ))(� � = �(�))} 
• A consistent learner outputs a hypothesis 

belonging to VS 
• To bound the number of samples needed 
by a consistent learner, it is enough to 
bound the number of samples needed to 
assure that VS contains no unacceptable � 



Sample complexity: consistent finite �  

(Haussler, 1988) 

• The version space is *–exhausted when 
all consistent hypotheses have true error 

less than   
∀� ∈ VS',� 	error� � <   

• if |�| is finite and ) is a sequence of + 

independent randomly drawn samples, 

– the probability that VS',� is not  -exhausted 
is no more than 

|�|,-./ 

So it bounds the probability that + training 

examples will fail to eliminate hypotheses 

with true error greater than   



Sample complexity: consistent finite �  

(Haussler, 1988) 

• Finally! we can determine the number of 
training samples required to reduce this 
probability below some desired ! 

|�|,-./ ≤ ! 
+ ≥ 1

 ln � + ln	(1 !5 )  

• this number of training samples is enough 
to assure that any consistent hypothesis will 
be probably (1 − !) approximately ( ) 
correct  



Sample complexity: inconsistent finite �  

• What if � does not contain target concept 
�? 

• We want learner to output � ∈ � that has 
minimum training error 

• Define �789: as the hypothesis from � with 
minimum training error 

• How many training samples are needed 
to ensure that  

error�(�789:) ≤  + error�(�789:) 



Sample complexity: inconsistent finite �  

(Hoeffding bounds, 1963) 

• For a single hypothesis to have a 

misleading training error 

Pr	 error�(�) > 	 + error�(�) ≤ ,-</.= 
• We want to assure that the best hypothesis 

has an error bounded this way  

– so consider that any one of them could have a 

large error 

Pr	 (∃� ∈ �)error�(�) > 	 + error�(�) 
≤ |�|,-</.= 



Sample complexity: inconsistent finite �  

(Hoeffding bounds, 1963) 

• So if do the stuff we did before, call that 

probability !, we can find a bound for the 
number of samples needed to hold ! to 
some desired value 

+ ≥ 1
2 < ln � + ln	(1 !5 )  



Sample complexity: example 

• 
: conjunction of @ boolean literals 
• is	
 PAC-learnable? 
• So � =	3B and  

+ ≥ 1
 @ln 3 + ln	(1 !5 )  

+ = 1
.1 10ln 3 + ln	(1 .055 ) = 140 

• + grows linearly in @,  , and logarithmically in F G⁄  

• So as long as � requires no more than polynomial 
computation per training sample, then total 
computation required will be polynomial as well.  

 



Sample complexity: infinite  

• using |�| leads to weak bounds 
• and in case of � = 	∞ we cannot apply it 

at all 

• so we define a second measure of 

complexity called VC dimension 

• in many cases it provides tighter bounds 

• note (I will explain later): 

VC(�) ≤ log< |�| 



VC theory  
(V. Vapnik and A. Chervonenkis, 1960-1990) 

• VC dimension 

• Structural risk minimization 

 



VC dimension 
(V. Vapnik and A. Chervonenkis, 1968, 1971) 

• First we’ll define shattering  

• Consider hypotheses for the two-class 

pattern recognition problem: 

� K, L ∈ −1, 1 		∀K, L  
• Now, if for a set of M points that can be 
labeled in all 2N ways (either + or −),  
– a member of the set {� L } can be found which 
correctly assigns those labels… 

– we say, that set of points is shattered by {� L } 
 



VC dimension: example 
three points in O<, shattered by oriented lines 

 

 

 

 

 

 

• For our purposes, it is enough to find one set of 
three points that can be shattered 

• It is not necessary to be able to shatter every 
possible set of  three points in 2 dimensions 



VC dimension: continued 

• The maximum number of points that can 
be shattered by � =	 �(L) 	is called 
– VC dimension of P  
– and denoted as QR P 	 

• So the VC dimension of the set of oriented 
lines in O< is three (last example) 

• VC �  is a measure of the capacity of the 
hypothesis class � 
– the higher the capacity, the higher the ability of 
the machine to learn any training set without 
error 

 



VC dimension: intuition 

• High capacity:  

– not a tree, b/c different from any tree I have 

seen (e.g. different number of leaves) 

• Low capacity:  

– if it’s green then it’s a tree  



Low VC dimension 

• VC dimension is pessimistic 

• If using oriented lines as our hypothesis 
class 
– we can only learn datasets with 3 points!  

• This is b/c VC dimension is computed 
independent of distribution of instances 
– In reality, near neighbors have same labels 

– So no need to worry about all possible labelings 

 

• There are a lot of datasets containing more 
points that are learnable by a line! 



Infinite VC dimension 

• Lookup table has infinite VC dimension 

• But so does the nearest neighbor 
classifier 

– b/c any number of points, labeled arbitrarily 
(w/o overlaps), will be successfully learned 

• But it performs well... 

 

• So infinite capacity does not guarantee 
poor generalization performance  

 



Examples of calculating VC dimension 

• So we saw that the VC dimension of the 

set of oriented lines in O< is 3 
• Generally, the VC dimension of the set of 

oriented hyperplanes in OB is @ + 1 



Examples of calculating VC dimension: 

continued 

• Let S be a positive kernel which 
corresponds to a minimal embedding 

space ℋ. 

• Then the VC dimension of the 

corresponding support vector machine 

is dim ℋ + 1. 
• Proof… 



VC dimension of SVMs with polynomial 

kernels 

• e.g. X K, Y = 	 K, Y < 
• if K and Y are 2-dimensional: 

X K, Y = �FZF + �<Z< < =	�<Z< + 2�FZF�<Z< +	�<Z< 
– the feature space is 3-dimensional 

– and the VC dimension of an SVM with this 
kernel is 3 + 1 = 4 

• in general, for a space with dimension [, the 
dimension of the embedding space for 
homogeneous polynomial kernels is 

[ + \ − 1
\  



Sample complexity and the VC dimension 
(Blumer et al., 1989) 

+ ≥ 1
 4 log< 2 !5 + 8ℎ log< 13  5  

 

• where ℎ = VC(�) 
 



Structural risk minimization 
(V. Vapnik and A. Chervonenkis, 1974) 

• A function that fits training data and 
minimizes VC dimension 

– will generalize well 

• SRM provides a quantitative 
characterization of the tradeoff between  

– the complexity of the approximating 
functions,  

– and the quality of fitting the training data 

• First, we will talk about a certain bound.. 



A bound 

• on the generalization performance of a pattern 
recognition learning machine 
– from Burges, 1998 

_ L = 	`1
2 Z	 − �(K, L) [a(K, Z) 

_ L = `1
2 Z	 − � K, L \ K, Z [K[Z 

_b/c L = 	 1
2Md Z − �(K , L)

N

eF
 

 

true 

mean 

error/ 

actual 

risk 

empirical 

risk 



A bound: continued 

	
_ L ≤ _b/c L

+ ℎ log 2M ℎ⁄ + 1 −	 log f 4⁄
M  

 

VC 

confidence 

risk bound 



SRM: continued 

• To minimize true error (actual risk), both 

empirical risk and VC confidence term 

should be minimized 

• The VC confidence term depends on the 

chosen class of functions 

• Whereas empirical risk and actual risk 

depend on the one particular function 

chosen for training  

 



SRM: continued 

• The VC dimension ℎ doesn’t vary 
smoothly since it is an integer  

• Therefore the entire class of functions is 

structured into nested subsets (ordered 

by ℎ, ℎ < ∞) 

 

 



SRM: continued 

• For a given data set, optimal model 

estimation with SRM consists of the 

following steps: 

1. select an element of a structure (model 

selection) 

2. estimate the model from this element 

(statistical parameter estimation) 

 

 



SRM: continued 

 

 
SRM chooses 

the subset g 
for which 

minimizing 

the empirical 

risk yields 

the best 

bound on the 

true risk. 



Support vector machine 
(Vapnik, 1982) 

• Does SVM implement the SRM principle? 

• We have shown that the VC dimension of a 
nonlinear SVM is dim ℋ + 1, where dim ℋ  is 
the dimension of space ℋ 

• and equal to 
[h + \ − 1

\  and ∞ for a –degree 

polynomial and RBF kernel, respectively 

– So SVM can have very high VC dimension 

• But, it is possible to prove that SVM training 
actually minimizes the VC dimension and 
empirical error at the same time. 

 

 



Support vector machine 
(Vapnik, 1995) 

• Given + data points in OB, � ≤ _ 
• �i: set of linear classifiers in OB with margin j on � 
• Then  

VC(�) ≤ min	 @, 4_<
j<  

• This means that hypothesis spaces with 
large margin have small VC dimension 

• (Burges, 1998) claimed that this bound is for 
a gap-tolerant classifier but not the SVM 
classifier…  

 



What we said today 

• PAC bounds  

– only apply to finite hypothesis spaces 

• VC dimension is a measure of 
complexity  

– can be applied for infinite hypothesis spaces 

• Training neural networks uses only ERM, 
whereas SVMs use SRM 

• Large margins imply small VC dimension 
☺ 
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