
Efficient Classification Based on

Sparse Regression

by

Pardis Noorzad

A thesis submitted in partial fulfilment

of the requirements for the degree of

Master of Science

in

COMPUTER ENGINEERING

with an emphasis in Artificial Intelligence

at the

Department of Computer Engineering and Information Technology

AMIRKABIR UNIVERSITY OF TECHNOLOGY

Committee:

Mohammad Rahmati, Supervisor

Nasrollah Moghaddam Charkari

Mohammad Mehdi Ebadzadeh

July 2012

c⃝ Copyright by Pardis Noorzad, 2012.
All rights reserved.

Abstract

The ℓ1-regularized square loss minimization problem has recently gained much attention.
This optimization principle has two main applications in the machine learning literature.
Specifically, the lasso or basis pursuit de-noising (although the two are not entirely
equivalent in practice) is the optimization principle used for solving the linear inverse
problem: y = Xa, under convex sparsity constraints. When the lasso is used for
regression and classification, y is a vector of outputs. When it is used for sparse coding
and feature learning, or in the context of sparse representation classification, y is the
feature vector or signal itself.

The use of lasso for regression is already well-established. In this thesis, we argue
that the use of lasso for classification also has its advantages. One might think that
the square loss is not appropriate for the classification task, however, theoretical results
show that all convex loss functions are Fisher consistent. Additionally, square loss
minimization, like logistic loss minimization, and unlike hinge loss minimization, gives
estimates of the posterior probability. The value of the posterior probability at a point
tells us about the confidence of the classifier in its prediction. Another benefit of the
lasso for classification is that ℓ1-regularization leads to a sparse classifier, that once
trained, can be evaluated quickly. Additionally, one has direct control over the sparsity
of the solution through the regularization parameter. The only problem with the lasso
is the stability of its solutions (Wang et al., 2011).

The second part of the thesis, is on the use of the lasso for signal and feature
representation. The lasso or basis pursuit de-noising is also an integral part of the sparse
representation classification method. We extend this method to the regression setting.
Through experimental results we argue that one can easily achieve the same or even
better results using simpler methods like k-nearest neighbor classification which is also
better motivated theoretically. We conclude that ℓ1-regularized square loss minimization
is not worth it.

Keywords: square loss minimization, ℓ1-regularization, binary classification, sparse
representation

Acknowledgements

I thank my supervisor, Prof. Mohammad Rahmati, for accepting me as his student
at the Image Processing and Pattern Recognition lab, and for making sure we had a
comfortable place in which to work. I also thank him for his time and patience in
putting up with my myriad ideas for the thesis, for providing me with directions, and
for making sure I stayed on the right track during my studies at AUT.

I am truly indebted to Prof. Bob L. Sturm of Aalborg University Copenhagen.
This document would have lacked in content and quality had I not had the wonderful
privilege of working with him. He introduced me to sparse approximation algorithms
that have become the motivation for this thesis. I thank him for being the inspiring
mentor who has helped me gain the confidence and skills to pursue a future in research.

Special thanks go to my brother, Parham, for his technical advice on the Hilbert
space of functions, inner products and norms, and for all the many hours of conversa-
tions. My greatest gratitude goes to my parents, for being extraordinary teachers, for
supporting me, comforting me, and caring for me through every moment of my life.

Contents

Abstract i

List of Figures iii

List of Tables iv

1 Introduction 1
1.1 Linear Classification and the SVM . 1
1.2 Linear Inverse Problems, Regression, and Regularization 7
1.3 Sparse Approximation . 10

2 On ℓ1-regularized Square Loss Minimization for Classification 12
2.1 Classification and Convex Loss Minimization 12
2.2 Why does ℓ1-regularization induce sparsity? 19
2.3 Empirical Evaluation of Lasso for Classification 19

3 On ℓ1-regularized Square Loss Minimization for Reconstruction 21
3.1 Sparse Coding and Dictionary Learning for Feature Learning 22
3.2 Sparse Representation Classification . 24
3.3 SPARROW: SPARse appROximation Weighted regression 25
3.4 Empirical Evaluation of SPARROW . 30
3.5 Comparing kNN with SRC . 32

4 An Equivalence Between ϵ-SVR and BPDN 34
4.1 Reproducing Kernel Hilbert Space . 34
4.2 Support Vector Machines for Regression 36
4.3 ϵ-SVR and Sparsity . 39
4.4 Connection to Sparse Approximation . 40

5 Conclusion and Future Work 43
5.1 Nonlinear Regression . 43
5.2 Regularizing α: the SVM Dual Variable 44
5.3 Instability and Non-uniqueness of Lasso Solutions 44
5.4 kNN or Matching Pursuit for Feature Learning 44

ii

List of Figures

1.1 Graphs show that the number of support vectors increases as the number
of training samples grows. 5

1.2 Graphs show that the number of support vectors does not have a mean-
ingful relation to the hyperparameter C in the SVM optimization. . . . 6

2.1 In these figures, we see that the number of nonzero elements of the so-
lution increases as we increase the regularization parameter λ, thus pro-
viding us with means to control the sparsity of the solution. 13

2.2 A comparison of convex loss functions. The misclassification loss is also
shown. 18

2.3 As p goes to 0, |x|p becomes the indicator function and |x|p becomes a
count of the nonzero entries in x (Bruckstein et al., 2009). 19

3.1 Image classification pipeline (Coates and Ng, 2011). 24
3.2 These figures illustrate the ability of local regression methods to model

data with an unknown distribution. The function generating the data is:
yi = f(xi) + ϵi, where f(x) = (x3 + x2) I(x) + sin(x) I(−x). 27

3.3 Boxplots for 10-fold cross-validation estimate of mean squared error (100
independent runs) for four different datasets. Each box delimits 25 to 75
percentiles, and the red line marks the median. Extrema are marked by
whiskers, and outliers by pluses. 33

iii

List of Tables

1.1 Data set information: n denotes the number of observations and p denotes
the number of attributes of each observation. 4

2.1 Well-known convex loss functions and their corresponding minimizing
function. 17

2.2 A comparison of three other classifiers with the classification based on
lasso on seven data sets. The hyperparameter is denoted by C or λ, de-
pending on the algorithm. The number of nonzero entries in the solution
vector is denoted by #nz. The percentage of correctly classified testing
samples is denoted by Acc. 19

2.3 Results for classification based on ridge regression. Note that the number
of the number of nonzero entries of the solution equals the number of
attributes of the observations. 20

3.1 Data set information. The last column indicates the tuned parameter k
in the experiments involving k-NNR and Wk-NNR. 30

3.2 A comparison of the MSE estimates obtained on four data sets by 10 trials
of 10-fold cross-validation of C-SPARROW and L-SPARROW with and
without regularization. The last column denotes the ridge parameter
used to obtain the L-SPARROW estimate. 32

3.3 A comparison of the accuracy obtained by kNN and SRC on five multi-
class classification data sets. 32

iv

Chapter 1

Introduction

“The resulting classification function depends only on so-called supporting
patterns. These are those training examples that are closest to the decision
boundary and are usually a small subset of the training data.”

—Boser et al. (1992)

This thesis considers two main applications of ℓ1-regularized square loss minimiza-
tion. The first application, covered in Chapter 2, is of employing the mentioned op-
timization problem for the linear binary classification task. The second application,
covered in Chapter 3, is that of using ℓ1-regularized square loss minimization for signal
and feature representation. In Chapter 4, an equivalence between ℓ1-regularized square
loss minimization and ϵ-support vector regression is illustrated under a number of re-
stricting conditions. In the last chapter, conclusions and some areas for future work are
presented.

1.1 Linear Classification and the SVM

The support vector machine (SVM) classifier (Boser et al., 1992; Vapnik, 1995) has
two well-known properties: excellent generalization performance—attributed to an ℓ2
penalty on the weights; and a sparse coefficient vector—attributed to the the hinge loss
as its data fitting term. The latter suggests that upon computing the output for a given
test sample, the SVM classifier uses only a subset of the training samples, known as
the support vectors, thus leading to faster evaluation. In practice, however, the number
of support vectors is comparable to the number of training samples: the coefficient
vector is not sparse. Thus, the resulting classifier is expensive and grows more so with
increasing training samples (see Figure 1.1). The SVM optimization problem has the
form

minimize
1

2
∥w∥2 + C

n∑
i=1

ξi

subject to

{
yi(w.xi − b) ≥ 1− ξi
ξi ≥ 0

for i = 1, · · · , n,
(1.1)

1

INTRODUCTION

This can alternatively be written as

minimize
1

2
∥w∥2 + C

n∑
i=1

ξi

subject to ξi ≥ max
(
0, 1− yi(w.xi − b)

)
for i = 1, · · · , n.

(1.2)

Introduce the notation

ξi ≥
[
1− yi(w.xi − b)

]
+
, where [x]+ = max(0, x) (1.3)

This leads to the following formulation for the SVM optimization problem

min
1

2
∥w∥2 + C

n∑
i=1

[
1− yi(w.xi − b)

]
+

(1.4)

which consists of two terms, namely, the hinge loss and ℓ2-regularization of the weights.

Sparsity of the resulting classifier is important for real-time applications like speech
recognition. It is also crucial for applications with many observations to evaluate, for
e.g., in systems for reading cheques and zip codes. A sparse classifier also takes up less
memory.

In this thesis, we focus on linear classifiers. There are two main reasons for this
decision. Nonlinear classifiers, like nonlinear SVM take longer to train and evaluate.
This is especially a setback in the multiclass case where many classifiers are to be
trained for one task, in a one-versus-one or one-versus-all setting. Additionally, for high-
dimensional problems, nonlinear classification does not provide a significant advantage.
High-dimensional data spaces are usually sparse—except in some applications—and are
therefore more likely to be linearly separable.

Towards building a faster classifier, we enforce sparsity by regularization with a
sparsity-inducing norm. This also allows explicit control over the sparsity of the coef-
ficient vector through the regularization parameter—unlike in the SVM optimization
where such control is not straightforward (see Figure 1.2). Specifically, we use ℓ1-
regularized square loss minimization algorithms, especially SPGL1 (van den Berg and
Friedlander, 2008), to solve the classification problem. This is what sets our work apart
from the recent study by Yuan et al. (2010, 2011). Their analyses focuses only on al-
gorithms optimizing the logistic or the squared hinge loss—also called the L2 loss—and
defined as,

max(0, 1− yaTx)2. (1.5)

The logistic loss is twice differentiable as is the case for the square loss. However, the
squared hinge loss is not.

Related Work in Square Loss Minimization for Classification

In his PhD thesis, Rifkin (2002) claims that the hinge loss is not the secret to SVM’s
success. Rifkin proposes Regularized Least Squares Classification (RLSC)

min
w

∥y −Xw∥2 + λ∥w∥2 (1.6)

2

1.1. Linear Classification and the SVM

and the nonlinear case
min
c

∥y −Kc∥2 + λcTKc (1.7)

where K is the matrix obtained by evaluating the kernel K on pairs of the training sam-
ples. Through some experimental studies, Rifkin shows that RLSC is as good as SVM
on various data sets. However, RLSC does not lead to a sparse classifier. Additionally,
nonlinear RLSC takes longer than SVM to train.

Least-squares optimization can be used for binary classification (Zhang and Oles,
2001; Rifkin et al., 2003; Hastie and Zhu, 2006). It can also be used in the context of
generalized linear models—for e.g. logistic regression with iteratively reweighted least
squares optimization (Tibshirani, 1996; Lee et al., 2006) and for m-estimation (Fox,
2002; Andersen, 2008). We obtain a faster classifier that still retains some generalization
capabilities because of the ℓ1 regularizer. However, the latter deserves further analysis
(Girosi, 1998; Poggio et al., 2009; Xu et al., 2012).

Related Work in ℓ1-regularization for Sparse Classifiers

Yuan et al. (2010) compare several sparse linear classifiers of the form

min
w

∥w∥1 + C

n∑
i=1

ξ(w;xi, yi) (1.8)

with the logistic, hinge, and square hinge loss defined as

• ξlog(w;xi, yi) = log
(
1 + exp(−ywTx)

)
• ξL1(w;xi, yi) = max

(
1− ywTx, 0

)
• ξL2(w;xi, yi) = max

(
1− ywTx, 0

)2
.

However, they don’t consider optimizing the square loss for classification. As we show
in the next chapter, the square loss has several good computational and statistical
properties.

As we show through experiments and some simple proofs, there doesn’t seem to be
a significant advantage in preferring one convex loss function over the others for mini-
mization in the classification setting. Additionally, there are some benefits of optimizing
the square loss over the hinge loss and logistic loss (Zhang, 2004; Hastie and Zhu, 2006).
When there are inexpensive square loss minimization algorithms, it seems reasonable
and efficient to use them for our classification tasks.

Table 1.1 contains information about the datasets we use for our experiments in this
chapter and the next. They are from the LIBSVM website for binary class data sets1.
The sets are chosen to be representative of a variety of tasks that arise in practice.

1http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/binary.html

3

INTRODUCTION

Table 1.1: Data set information: n denotes the number of observations and p denotes the
number of attributes of each observation.

Data set # observations (n) # attributes (p)

adult1 1605 123
adult4 4781 123
adult7 16,100 123
adult9 32,561 123
australian 690 14
colon-cancer 62 2000
covertype 581,012 54
diabetes 768 8
heart 270 13
ionosphere 351 34
leu 38 7,129
liver-disorders 345 6
mushrooms 8124 112

4

1.1. Linear Classification and the SVM

0 200 400 600 800 1000 1200 1400 1600 1800
0

1

2

3

4

5

6

7

8

n

su

pp
or

t v
ec

to
rs

(a) adult1 dataset

0 1000 2000 3000 4000 5000
0

2

4

6

8

10

12

14

16

n

su

pp
or

t v
ec

to
rs

(b) adult4 dataset

0 2000 4000 6000 8000 10000 12000 14000 16000
0

2

4

6

8

10

12

14

n

su

pp
or

t v
ec

to
rs

(c) adult7 dataset

0 1 2 3 4 5 6

x 10
5

0

5

10

15

20

25

n

su

pp
or

t v
ec

to
rs

(d) covertype dataset

0 50 100 150 200 250 300 350
0

2

4

6

8

10

12

n

su

pp
or

t v
ec

to
rs

(e) Ionosphere dataset

Figure 1.1: Graphs show that the number of support vectors increases as the number of
training samples grows.

5

INTRODUCTION

0 5 10 15 20 25
53

54

55

56

57

58

59

60

C

su

pp
or

t v
ec

to
rs

(a) australian dataset

0 10 20 30 40 50
23

23.5

24

24.5

25

25.5

26

C

su

pp
or

t v
ec

to
rs

(b) heart dataset

0 5 10 15 20 25
10

12

14

16

18

20

22

24

26

28

30

C

su

pp
or

t v
ec

to
rs

(c) ionosphere dataset

0 10 20 30 40 50 60 70 80
60

62

64

66

68

70

72

74

76

78

80

C

su

pp
or

t v
ec

to
rs

(d) liver-disorders dataset

Figure 1.2: Graphs show that the number of support vectors does not have a meaningful
relation to the hyperparameter C in the SVM optimization.

6

1.2. Linear Inverse Problems, Regression, and Regularization

1.2 Linear Inverse Problems, Regression, and Regulariza-
tion

Given Tn, our goal is to estimate the real regression coefficients a0, a1, . . . , ap of the
linear model

Y =

p∑
j=1

ajXj + a0 (1.9)

such that an empirical estimate of the expected value of a specified loss criterion is
minimized. Note that the random variable Y is the response variable, and the random
vector X contains the predictor or explanatory variables X1, . . . , Xp. In the absence of
noise and using the vector-matrix notation, the regression problem boils down to finding
a solution to the following system of equations

y = Xa (1.10)

where y = [y1, . . . , yn]
T is the vector of observed responses, X is an n× p design matrix

defined as X = [x1|x2| . . . |xn], where xi = [xi1, . . . , xip]
T, and a = [a1, . . . , ap]

T is the
target vector of regression coefficients. In the rest of our discussion, we assume that the
bias term a0, is implicit in our representation, that is

xT
i = [xT

i , 1] and aT = [aT, a0]. (1.11)

One would wish to solve (1.10) directly, butX is almost never invertible in our problems.
If n = p or n > p, the system of equations characterized by (1.10) is overdetermined. In
this case a solution does not exist. If n < p the system is underdetermined and there
exists infinitely many solutions. Instead of solving (1.10), one tries to minimize a certain
measure of the residual between the sides of the equation. A common loss criterion for
regression applications is the least squares loss function. The least squares error is the
sum of squared residuals, where the residuals are defined as

r = y −
p∑

j=1

ajxj − a0. (1.12)

Putting it all together, the least squares error becomes

∥y −Xa∥22. (1.13)

In other words, we allow for some noise in the model, and aim to minimize a certain
function of that noise. One way to estimate the regression coefficients a, is to minimize
(1.13). The minimization of (1.13) is an unconstrained convex optimization problem
with a differentiable objective. It has a unique global minimum. The objective in (1.13)
is minimized when its gradient is zero with respect to a. This yields the following system
of equations, known as the normal equations

(XTX)â = XTy. (1.14)

The normal equations can be solved efficiently if XTX has full rank—in this case, X
must have full column rank. However, this condition may not hold in most applications
and lead to numerical instability. This can also cause the least squares estimate to be

7

INTRODUCTION

highly inaccurate. A solution to this problem is Tikhonov regularization. In Tikhonov
regularization, the square of the ℓ2 norm of the coefficients are added to the objective,
thereby giving preference to solutions with smaller ℓ2 norms. The idea is to incorporate
a priori assumptions on the solution. Tikhonov regularization leads to the following
optimization problem

∥y −Xa∥22 + λ∥a∥22 (1.15)

where λ is the regularization paramter that controls the tradeoff between the mini-
mization of the least squares term and the minimization of the ℓ2 penalty term. The
objective in (1.15) remains convex and differentiable with a unique global minimum
given as the solution of the following system of equations

(XTX+ λI)â = XTy. (1.16)

Note that XTX + λI is nonsingular even when XTX is singular. The minimization of
(1.15) is also known as ridge regression.

The ℓ2 penalty is part of the power family of penalties, indexed by γ ≥ 0

p∑
j=1

|aj |γ . (1.17)

This is the ℓγ norm of the parameter raised to the power of γ (Friedman, 2008). For
γ = 2 we get Tikhonov regularization or ridge regression. It is known that when γ = 2,
regularization results in a coefficient vector that is dense, i.e., almost all values are
nonzero. Regularization with the ℓ2 norm only has the shrinkage property—shrinking
the coefficient absolute values. At the other end of the spectrum, γ = 0 produces a
sparse coefficient vector. Hence, it is said to have the variable selection property. We
have already seen this in play in Section 1.3. Least squares regression with γ = 0 is
known as all-subsets regression. Penalizing with the ℓ0 norm forces many values of the
coefficient vector to zero but does not shrink any nonzero values. In between, there is
γ = 1. Optimization with the ℓ1 penalty holds the best of both worlds: shrinkage and
selection. Least squares optimization with ℓ1-regularization has been made popular by
Chen et al. (1995) as Basis Pursuit Denoising (BPDN), and by Tibshirani (1996) as the
Least Absolute Selection and Shrinkage Operator (LASSO).

Let us look more closely at the ℓ1-regularized least squares problem

min
a

1

2
∥y −Xa∥22 + λ∥a∥1. (1.18)

The objective in (1.18) is convex but no longer differentiable due to the ℓ1 norm. Thus
there no longer exists a closed form solution as was the case for (1.13) and (1.15). In
Chapter 2 we go over several methods for solving (1.18).

We are also interested in the elastic-net penalty. Additionally, go over all three
“equivalent” forms of Tikhonov regularization.

1.2.1 Logistic Regression

In logistic regression, the regression function has a nonlinear relation with the linear
combination of the explanatory variables. This relation is modeled by the probit func-
tion.

8

1.2. Linear Inverse Problems, Regression, and Regularization

In the classification setting, the response is a binary variable, i.e., yi ∈ {−1, 1}.
The response data are chosen to be realizations of a Bernoulli random variable Y with
success probability η = P{Y = 1}. The success probability is assumed to depend on the
predictors, i.e., η = η(x). For the Bernoulli distribution, it is known that E{Y } = η.
If the predictors are considered to be realizations of a random variable X, then η(x) is
the conditional expectation of Y

E{Y |X} = η(x). (1.19)

In linear regression, the conditional expectation of Y given the value x of X is an affine
function of x

E{Y |X} = aTx. (1.20)

In classification however, a monotone link function g transforms the expectation to the
linear combination of the predictors

g
(
E{Y |X}

)
= aTx. (1.21)

Models of this form are known as generalized linear models. In the case of logistic
regression, the link function is chosen to be to logit function

g(a) = ln
a

1− a
. (1.22)

The inverse of the logit function is the logistic function, denoted as σ(z)

g−1(z) = σ(z) =
1

1 + exp(−z)
(1.23)

therefore the conditional expectation becomes,

E{Y |X} = g−1
(
aTx

)
= σ

(
aTx

)
. (1.24)

In order to estimate the unknown parameter a of the model, we begin by forming the
likelihood function. We assume the observations are generated independently. The
likelihood function is algebraically the same as the joint probability density function of
the observations, thus

L(a) = p(y|X;a) =

n∏
i=1

p(yi|xi;a)

=

n∏
i=1

σ
(
aTxi

)yi(1− σ(aTxi)
)1−yi .

(1.25)

For computational reasons we consider instead the logarithm of the likelihood function

ℓ(a) = logL(a) =
n∑

i=1

log p(yi|xi;a). (1.26)

Maximizing the likelihood is equivalent to minimizing the negative log-likelihood. The
optimization problem we aim to solve becomes

min
a

n∑
i=1

− log p(yi|xi;a) = min
a

n∑
i=1

− log σ
(
yia

Txi

)
(1.27)

= min
a

n∑
i=1

log
(
1 + exp

(
− yia

Txi

))
. (1.28)

9

INTRODUCTION

where (1.27) follows because yi ∈ {−1, 1}. The function

log
(
1 + exp

(
− yia

Txi

))
(1.29)

in (1.28) is often referred to as the logistic loss. As can be seen, optimizing the logistic
loss happens to produce a maximum likelihood estimate. Therefor, logistic regression
is considered to be maximum-likelihood estimation if the posterior probability η(x) can
be expressed as 1/(1 + exp(−f(x))) for some f(x) ∈ F .

Let’s assume instead, that we are interested in the maximum a posteriori (MAP)
estimate of the parameters a. We consider a Laplacian prior on the parameters. The
multivariate Laplacian probability distribution has the form

p(a) =
(λ
2

)n
exp(−λ∥a∥1). (1.30)

The optimization problem we need to solve is

max
a

n∑
i=1

log p(yi|xi;a)p(a) = max
a

n∑
i=1

log p(yi|xi;a) + log p(a) (1.31)

= min
a

n∑
i=1

− log p(yi|xi;a) + λ∥a∥1 (1.32)

= min
a

n∑
i=1

log
(
1 + exp

(
− yia

Txi

))
+ λ∥a∥1. (1.33)

The optimization in (1.33) is referred to as the ℓ1-regularized logistic regression problem.

1.3 Sparse Approximation

Methods for sparse approximation and sparse coding have recently been getting in-
creasing attention (Bruckstein et al., 2009). Hence, there arises the need to exploit
what these new or renewed results have to offer. Below we briefly go over the problem
of sparse approximation.

Suppose we have a full rank matrix A ∈ Rn×m, with n < m, and we wish to solve
the system of equations Ax = b. Clearly, the system of equations is underdetermined
and so has infinitely many solutions. We constrain the problem by requiring that x be
sparse, i.e. have few nonzero entries. More precisely, we define the ℓ0 pseudo-norm as
below

∥x∥0 = #{i : xi ̸= 0}.
Based on this definition, x is sparse if ∥x∥0 ≪ m. The optimization problem we want
to solve is as follows,

minimize ∥x∥0 subject to Ax = b. (1.34)

However, because of the combinatorial aspect of the ℓ0 norm, the above optimization
problem is NP-hard. Over the years, there have been many attempts at solving the
sparse approximation problem of (1.34) approximately, see for e.g. (Mohimani et al.,
2009). There have also been attempts at relaxing the constraints and objective of (1.34)
to make it tractable. Many of these methods solve a relaxed version of this optimization
problem exactly, see for e.g. (Chen et al., 1995; Tibshirani, 1996). We will repeatedly
come back to this topic throughout the thesis.

10

1.3. Sparse Approximation

1.3.1 Sparse Representation of Signals and Features

In recent years, sparse approximation has proven to be a successful unsupervised feature
learning method (Coates and Ng, 2011). One can use sparse approximation (Section 1.3)
to obtain a (higher-dimensional) sparse representation of a given feature vector. This
is known in the literature as sparse coding. Yang et al. (2009) show that sparse coding
improves the classification performance of linear SVM when used to learn features in
an image classification task.

If the dictionary used in sparse coding is made up of training samples with known
labels, the resulting sparse representation can be used for classification (Wright et al.,
2009). We show that this setup can also be used for regression.

11

Chapter 2

On ℓ1-regularized Square Loss
Minimization for Classification

“Lasso (ℓ1-)penalties are useful for fitting a wide variety of models. Newly
developed computational algorithms allow application of these models to large
data sets, exploiting sparsity for both statistical and computation gains.”

—Tibshirani (2011)

As was explained in Chapter 1, we are interested in solving the ℓ1-regularized least
squares optimization problem of (1.18). In this chapter we go over efficient methods
for performing this optimization problem and more importantly, answer if it can be
employed successfully in the classification setting. There are a wide variety of algorithms
available to solve the ℓ1-regularized least squares optimization problem (Mairal, 2010).
In this thesis, we employ one of the most successful of these algorithms that is able to
solve the ℓ1-regularized square loss minimization problem optimally. This algorithm is
called Spectral Projected Gradient Method for ℓ1-minimization (SPGL1) (van den Berg
and Friedlander, 2008) and solves the following optimization problem (it calls the lasso)

min
a

∥y −Xa∥22 s.t. ∥a∥1 ≤ λ. (2.1)

There are a variety of reasons for using the lasso optimization principle to train our
classifier. As we have noted before, one of the reasons is explicit control over the sparsity
of the solution. In Figure 2.1, we show that one can control the sparsity of the solution
using the regularization parameter λ in the lasso formulation above. Another important
reason is that the square loss has many computational and statistical benefits. The next
section explains why all convex loss functions are suitable for the task of classification.
It also explains an important statistical advantage of the square loss over the hinge loss.

2.1 Classification and Convex Loss Minimization

Pattern recognition, also known as classification, is the process of assigning a discrete
label to an unknown observation (Devroye et al., 1996). In pattern recognition, the task
is to find a function g : Rp → {1, . . . ,M} which takes an observation represented by
x ∈ Rp and assigns it to y ∈ {1, . . . ,M}: one of M available classes. The function g is
called a classifier.

12

2.1. Classification and Convex Loss Minimization

1 2 3 4 5 6 7 8
0

200

400

600

800

1000

1200

1400

1600

1800

2000

λ

no

nz
er

o
co

ef
fic

ie
nt

s

(a) colon-cancer dataset

2 4 6 8 10 12 14 16 18 20
5

10

15

20

25

30

35

λ

no

nz
er

o
co

ef
fic

ie
nt

s

(b) ionosphere dataset

1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

λ

no

nz
er

o
co

ef
fic

ie
nt

s

(c) mushrooms dataset

Figure 2.1: In these figures, we see that the number of nonzero elements of the solution
increases as we increase the regularization parameter λ, thus providing us with means to control
the sparsity of the solution.

For our present analysis, let X and Y be random variables taking their values from
Rp and {1, . . . ,M}, respectively. Define the probability of error for a classifier g as

L(g) = P{g(X) ̸= Y }. (2.2)

Consequently, the optimal classifier g∗ is

g∗ = argmin
g:Rp→{1,...,M}

P{g(X) ̸= Y } (2.3)

and is called the Bayes classifier. The corresponding probability of error—the minimum
probability of error—is called the Bayes error and denoted by L∗ = L(g∗).

To compute g∗, one needs to know the distribution of (X,Y) which is unknown. We
can however, given enough data, find a classifier g with low L(g). For our classification

13

ON ℓ1-REGULARIZED SQUARE LOSS MINIMIZATION FOR CLASSIFICATION

task, we have access to the data set Tn = {(xi, yi) : i = 1, . . . , n} of n observations,
assumed to be sampled i.i.d. from the distribution of (X,Y).

In the rest of this thesis, we consider the case of binary classification, that is, M = 2.
In this case, Y takes its values from the binary set {−1,+1}. Binary classification can
readily be extended to the multiclass classification (M > 2) in a one-versus-all (OVA)
setting (Rifkin and Klautau, 2004).

Before we further delve into the topic of classification, we introduce an importance
concept in this setting: the posterior probability.

2.1.1 The Posterior Probability and Plug-in Classifiers

In regression analysis, the goal is to estimate Y given X by r(X), where r : Rp → R is
a function. One can show that the function minimizing the mean squared error in this
setting is the posterior probability η

η(x) = P{Y = 1|X = x} = E{Y |X = x}. (2.4)

That is, for all r : Rp → R,

E{(η(X)− Y)2} ≤ E{(r(X)− Y)2} (2.5)

Proof. For each x ∈ Rp we have

E{(r(X)− Y)2|X = x}
= E{(r(X)− η(X) + η(X)− Y)2|X = x}
= (r(x)− η(x))2 + 2(r(x)− η(x))E{η(X)− Y |X = x}+ E{(η(X)− Y)2|X = x}
= (r(x)− η(x))2 + E{(η(X)− Y)2|X = x}.

(2.6)
Note that equality holds in (2.5), if and only if for all x ∈ Rp

r(x) = η(x).

The significance of the posterior probability is that, given η, one can construct a
classifier with minimum probability of error. Define the classifier g∗ : Rp → {−1, 1}
using the regression function η as

g∗(x) =

−1 if η(x) ≤ 1

2
1 otherwise.

(2.7)

The claim is that g∗ is the Bayes classifier, that is, it minimizes the error probability.
To prove this, one needs to show that for any classifier g : Rp → {−1, 1}

P{g∗(X) ̸= Y } ≤ P{g(X) ̸= Y }. (2.8)

Proof. For a given X = x, the conditional probability of error of the classifier g is

P{g(X) ̸= Y |X = x}
= 1− P{g(X) = Y |X = x}

= 1−
(
P{g(X) = 1, Y = 1|X = x}+ P{g(X) = −1, Y = −1|X = x}

)
= 1−

(
χ{g(x)=1}P{Y = 1|X = x}+χ{g(x)=−1}P{Y = −1|X = x}

)
= 1−

(
χ{g(x)=1}η(x) +χ{g(x)=−1}(1− η(x))

)
.

(2.9)

14

2.1. Classification and Convex Loss Minimization

where χA is the indicator function of the set A. For every x ∈ Rp, one can write

P{g(X) ̸= Y |X = x} − P{g∗(X) ̸= Y |X = x}

= η(x)
(
χ{g∗(x)=1} −χ{g(x)=1}

)
+ (1− η(x))

(
χ{g∗(x)=−1} −χ{g(x)=−1}

)
= (2η(x)− 1)

(
χ{g∗(x)=1} −χ{g(x)=1}

)
≥ 0

(2.10)
where the last equality holds because

χ{g∗(x)=−1} = 1−χ{g∗(x)=1}

χ{g(x)=−1} = 1−χ{g(x)=1}.
(2.11)

One can now reach (2.8) by integrating over x.

The function η(x) is unknown. To approximate the Bayes classifier, we employ the
nonnegative function η̃(x) as an approximation of η(x) and plug it in the form of the
Bayes classifier in Eq. (2.18)

g(x) =

−1 if η̃(x) ≤ 1

2
1 otherwise.

(2.12)

The classifier g is called the plug-in classifier. Plug-in classifiers perform well. For-
mally, if η̃(x) is close to η(x)—as measured by the expected L1 norm—then the error
probability of the plug-in classifier is close to the Bayes error, that is

P{g(X) ̸= Y } − L∗ ≤ 2E{|η(X)− η̃(X)|}. (2.13)

Proof. Note that the difference between the conditional error probabilities of g and g∗

is zero when g(x) = g∗(x) for x ∈ Rp. When g(x) ̸= g∗(x), based on (2.10), one can
write the difference as

P{g(X) ̸= Y |X = x} − P{g∗(X) ̸= Y |X = x}

= (2η(x)− 1)
(
χ{g∗(x)=1} −χ{g(x)=1}

)
=

∣∣2η(x)− 1
∣∣χ{g(x) ̸=g∗(x)}

= 2
∣∣η(x)− 1/2

∣∣χ{g(x) ̸=g∗(x)}

≤ 2
∣∣η(x)− η̃(x)

∣∣.
(2.14)

The last inequality holds because g(x) ̸= g∗(x) implies∣∣η(x)− η̃(x)
∣∣ ≥ ∣∣η(x)− 1/2

∣∣. (2.15)

To see why this is true, consider each case in turn

if g∗(x) = −1 ⇒ η(x) ≤ 1/2 and g(x) = 1 so η̃(x) > 1/2∣∣η(x)− η̃(x)
∣∣ = η̃(x)− η(x) ≤ 1/2− η(x) =

∣∣1/2− η(x)
∣∣
15

ON ℓ1-REGULARIZED SQUARE LOSS MINIMIZATION FOR CLASSIFICATION

if g∗(x) = 1 ⇒ η(x) > 1/2 and g(x) = −1 so η̃(x) ≤ 1/2∣∣η(x)− η̃(x)
∣∣ = η(x)− η̃(x) ≤ η(x)− 1/2 =

∣∣1/2− η(x)
∣∣.

Getting back to the proof, we can reach the claim by integrating both sides of the
inequality in (2.14) over x

P{g(X) ̸= Y } − L∗ ≤ 2E
{∣∣η(X)− η̃(X)

∣∣}.
This result shows that a good estimate of η can produce a good plug-in classifier.

What is illuminating to notice is that η̃(x) can be far from η(x) and one would obtain
the same classifier as long as they are both on the same side of 1/2.

We are now ready for a thorough treatment on ways to obtain a good classifier in
practice.

2.1.2 Empirical Risk Minimization

Minimizing the probability of error (the probability of misclassification)

L(g) = E{χ{g(X) ̸=Y }} = P{g(X) ̸= Y } (2.16)

is only possible with the knowledge of the joint distribution of X and Y . An estimate
of the probability of error of a classifier g given Tn is the average error count

Ln(g) =
1

n

n∑
i=1

χ{g(xi)̸=yi}. (2.17)

The estimate Ln(g) is called the empirical error of g. For a rather thorough survey of
recent advances consult (Boucheron et al., 2005).

We can now approach the classification task by considering a class C of classifiers
g : Rp → {−1, 1}. Given Tn, choose the classifier in C that results in the least empirical
error Ln(g). However, the problem of minimizing the empirical error is computationally
intractable. To deal with this issue, one needs to modify the functional to be minimized.
We consider classifiers of the form

gf (x) =

{
−1 if f(x) < 0

1 otherwise
(2.18)

where f : Rp → R is a real-valued function in F . The probability of error of gf is thus
written as

L(gf) = L(f) = P{sgn(f(X)) ̸= Y }
= P{Y f(X) ≤ 0}
= E{χ{Y f(X)≤0}}.

(2.19)

The quantity yf(x) is called the margin, and is a recurring theme in the rest of this
chapter. Given Tn, once can estimate L(f) by Ln(f)

Ln(f) =
1

n

n∑
i=1

χ{yif(xi)≤0} (2.20)

where χ{yf(x)≤0} is the 0-1 loss function. As explained before, minimizing the empirical
error is computationally intractable (Arora et al., 1993). Instead, we seek to minimize

16

2.1. Classification and Convex Loss Minimization

Table 2.1: Well-known convex loss functions and their corresponding minimizing function.

Loss function name Form of ϕ(v) Form of f∗
ϕ(η)

Square loss (1− v)2 2η − 1
Hinge loss max(0, 1− v) sign(2η − 1)
Squared hinge loss max(0, 1− v)2 2η − 1

Logistic loss ln(1 + exp(−v)) ln
η

1− η

a smooth convex upper bound of the 0-1 loss: χ{yf(x)≤0}. The smooth convex function
ϕ of the margin v = yf(x), called the cost function. Examples include the exponential
loss function, ϕ(v) = exp(−v), employed in AdaBoost (Freund and Schapire, 1997) and
the hinge loss function, ϕ(v) = max(0, 1 − v), used in SVM (Boser et al., 1992). The
cost functional becomes

A(f) = E{ϕ(Y f(X))} (2.21)

with its corresponding empirical form being

An(f) =
1

n

n∑
i=1

ϕ(yif(xi)). (2.22)

Note that ϕ is an upper bound on the 0-1 loss and hence, L(f) ≤ A(f) and Ln(f) ≤
An(f).

If F consists of functions that are linear in their parameters—thus making them
convex, then minimizing the empirical cost An(f) is a convex optimization problem.
Thus, there exist efficient algorithms for obtaining the minimum An(f) over f ∈ F .

The loss functions we are interested in are listed in Table 2.1 and are shown in
Figure 2.2. Real-valued loss functions act as surrogates to the 0-1 loss. This leads to
a regression problem. The result for classification is then obtained by thresholding the
output of the resulting function from regression. In what follows, we go over the fact
that optimizing a convex surrogate leads to the Bayes classifier.

Minimizing a convex upper bound of the 0-1 loss, not only leads to tractable classifi-
cation, but also a successful one. The empirical success of SVM and boosting reinforces
this point. More importantly, we can show that the minimizer f∗ of An(f) is such that
the induced classifier g∗f is the Bayes classifier.

To this aim, let us look at a closer look at the cost functional

A(f) = E{ϕ(Y f(X))}

= E
{
η(X)ϕ(f(X)) + (1− η(X))ϕ(−f(X))

} (2.23)

where η(x) denotes the posterior probability P{Y = 1|X = x}. Consider the following
definition

A(f, η) = ηϕ(f) + (1− η)ϕ(−f) (2.24)

where f ∈ R and η ∈ [0, 1]. Consider further that the function f∗
ϕ : [0, 1] → R is the

minimizer of A(f, η)
f∗
ϕ(η) = argmin

f∈R
A(f, η). (2.25)

17

ON ℓ1-REGULARIZED SQUARE LOSS MINIMIZATION FOR CLASSIFICATION

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Margin

Lo
ss

misclassification
hinge
squared hinge
logistic
square

Figure 2.2: A comparison of convex loss functions. The misclassification loss is also shown.

By the definition of f∗
ϕ above, it is evident that f∗

ϕ(η(x)) minimizes A(f(x)) in (2.21)
among all functions f(x). Given a convex loss function ϕ, the optimal minimizer f∗

ϕ is
easy to compute. In the third column of Table 2.1 we list the optimal f∗

ϕ for the loss
functions of interest. In these examples, it can readily be seen that f∗

ϕ(η) > 0 only when
η > 1/2. If we let f(x) = f∗

ϕ(η(x)), thus minimizing (2.21), then the induced classifier

g∗(x) =

{
−1 if f∗(x) < 0

1 otherwise

has the same sign as the Bayes classifier. This allows us to conclude that the minimizer
of the cost functional A(f), an upper bound on the true classification error L(f), is
such that the induced classifier gf is the Bayes classifier, thereby proving the Fisher
consistency of convex cost functions (Zhang, 2004; Boucheron et al., 2005; Lin, 2002;
Bartlett et al., 2003; Rosasco et al., 2004). Note that Fisher consistency in this context
requires that the population minimizer f∗ of the loss functional to have the same sign
as the Bayes classifier, i.e., sign(η − 1/2).

2.1.3 Estimation of the Posterior Probability

An important observation to be made based on Table 2.1 is that SVM estimates the
binary classifier directly. That is, SVM estimates sign(2η(x)−1) directly, instead of the
posterior probability η(x). This means that SVM cannot inform us about the confidence
of its predictions. Such information is especially useful for multiclass classification
using a binary classifier in a one-versus-all setting. In a situation where the posterior
probabilities for all classes are below 1/2, SVM fails to make correct decisions.

On the other hand, the least squares classifier estimates the posterior probability
η(x) and can thus provide confidence information. For the least squares classifier, the

18

2.2. Why does ℓ1-regularization induce sparsity?

Table 2.2: A comparison of three other classifiers with the classification based on lasso on
seven data sets. The hyperparameter is denoted by C or λ, depending on the algorithm. The
number of nonzero entries in the solution vector is denoted by #nz. The percentage of correctly
classified testing samples is denoted by Acc.

Data set lasso SVM ℓ1-reg L2SVM ℓ1-reg logreg

λ Acc #nz C Acc #nz C Acc #nz C Acc #nz

australian 10 86 14 2 86 68 20 86 14 5 87 14
colon-cancer 1 77 16 1 87 11 10 75 112 10 83 91
diabetes 10 80 8 1 75 105 10 77 8 10 76 8
heart 6 87 13 1.5 84 30 10 80 13 5 83 13
ionosphere 1 77 16 1 87 11 10 75 28 2 82 31
liver-disorders 2 46 6 2 62 70 5 66 6 5 67 6
mushrooms 2 48 13 2 100 90 10 100 96 20 100 95

posterior probability estimate is (f(x) + 1)/2 truncated to [0, 1]. For more in-depth
analysis of this subject see (Zhang, 2004).

2.2 Why does ℓ1-regularization induce sparsity?

Figure 2.3, gives a good intuition for the reason that ℓ1-regularization induces sparsity.

Figure 2.3: As p goes to 0, |x|p becomes the indicator function and |x|p becomes a count of
the nonzero entries in x (Bruckstein et al., 2009).

2.3 Empirical Evaluation of Lasso for Classification

In Table 2.2 we see the comparison of various methods for binary classification with the
lasso. We see that lasso is able to obtain the sparsest solutions in higher-dimensional
problems while maitaining reasonable accuracy. In Table 2.3, we see the results for ridge
regression used as a classifier.

19

ON ℓ1-REGULARIZED SQUARE LOSS MINIMIZATION FOR CLASSIFICATION

Table 2.3: Results for classification based on ridge regression. Note that the number of the
number of nonzero entries of the solution equals the number of attributes of the observations.

Data set ridge

λ Acc #nz

australian 30 86 14
colon-cancer 6 87 2000
diabetes 40 76 8
heart 9 86 13
ionosphere 10 74 34
liver-disorders 8 35 6
mushrooms 20 49 112

20

Chapter 3

On ℓ1-regularized Square Loss
Minimization for Reconstruction

“Over the last several years, there has been an explosion of interest in alternatives
to traditional signal representations. Instead of just representing signals as
superpositions of sinusoids (the traditional Fourier representation) we now have
available alternate dictionaries—collections of parameterized waveforms—of which
the wavelets dictionary is only the best known. Wavelets, steerable wavelets,
segmented wavelets, Gabor dictionaries, multiscale Gabor dictionaries, wavelet
packets, cosine packets, chirplets, warplets, and a wide range of other dictionaries
are now available.”

—Chen et al. (1995)

Sparse approximation schemes are known to be very useful for signal and feature
representation (i.e., reconstruction). For example, there exists a successful multiclass
classification algorithm based on sparse representations (Wright et al., 2009). In this
chapter, we look at the reconstruction performance (in the unsupervised setting) of
ℓ1-regularized square loss minimization algorithms.

As we have seen in Chapter 2, ℓ1-regularization is not as good as ℓ2-regularization
for generalization to unseen data. However, as experiments in sparse approximation
show (Wright et al., 2009; Yang et al., 2009; Coates and Ng, 2011), ℓ1-regularization
quite suitable for feature representation. What is it that makes sparse approximation
methods so successful at feature learning and representation? Is the success coming from
the sparsity of the representation or the fact that it overfits the data? Some analysis has
been done on the stability of ℓ1-regularized algorithms (Poggio et al., 2009; Xu et al.,
2012).

In the rest of this chapter we go over the application of ℓ1-regularized square loss
minimization for feature learning in an image classification task, especially, we go over
the work of Coates and Ng (2011). We then review the classification algorithm by
Wright et al. (2009), called sparse representation classification (SRC). Then we propose
our new method for regression that is an extension of SRC to regression. We then argue
that these approaches do not provide an improvement over much more efficient methods
like k-means and kNN.

21

ON ℓ1-REGULARIZED SQUARE LOSS MINIMIZATION FOR
RECONSTRUCTION

3.1 Sparse Coding and Dictionary Learning for Feature
Learning

To explain the significance of ℓ1-regularized square loss minimization for sparse coding,
we go over a paper by Coates and Ng (2011). In the paper, “The Importance of Encod-
ing Versus Training with Sparse Coding and Vector Quantization”, by “training” the
authors mean learning the dictionary D, and by “encoding” they mean mapping the in-
put x to feature f given the dictionary D. The authors argue that if we are able to break
down each feature learning method into its comprising training and encoding routines,
we can then combine the subroutines from different feature learning methods and get
more efficient algorithms without sacrificing (and sometimes improving) performance
on classification tasks. They report classification results using 5-fold cross-validation
with linear SVM on CIFAR-10, NORB, and Caltech 101 (81.5%, 95%, and 72.6%, the
first two being state-of-the-art results) (Coates and Ng, 2011). The authors experiment
with six methods for populating the dictionary, and a few methods for encoding using
the dictionary.

Here are the methods for learning/populating the dictionary (we are seeking dictio-
nary D ∈ Rn×d such that each atom (column) has unit ℓ2-norm):

1. Sparse coding (SC) with coordinate descent:

min
D,s(i)

∑
i

∥Ds(i) − x(i)∥22 + λ∥s(i)∥1.

One way to solve this optimization problem is to alternate minimization between
the dictionary D and sparse codes {s(i)} (one is kept fixed while the objective
function is minimized w.r.t. the other and so on). The authors obtain the pa-
rameter λ by minimizing its average cross-validation error over a grid of candid
values.

2. Orthogonal matching pursuit (OMP-k):

min
D,s(i)

∑
i

∥Ds(i) − x(i)∥22 (3.1)

subject to ∥s(i)∥0 ≤ k, ∀i, (3.2)

where k is an upper bound on the number of nonzero elements in s(i). To solve
this optimization problem, one would alternate between minimizing D and {s(i)},
just like above.

• Coordinate descent and OMP are algorithms for obtaining sparse codes given
a dictionary, the dictionary on the other hand, can be obtained using gradient
descent.

• Optimizing both 1. and 2., you get the sparse codes as a byproduct of learning
the dictionary (the training and encoding phases are intertwined). However,
this doesn’t stop us from holding on only to the dictionary obtained in this
step and computing the codes by other means.

3. Sparse restricted Boltzmann machine (RBM) and sparse auto-encoder.

22

3.1. Sparse Coding and Dictionary Learning for Feature Learning

4. Random downsampling of data matrix X containing normalized x(i)

5. Random weights: One fills the dictionary with normalized columns sampled from
the standard normal distribution.

And here are the methods for encoding:

1. SC: Same optimization problem as above, D fixed, possibly different λ, and setting
the elements of feature f as

fj = max{0, sj} (3.3)

fj+d = max{0,−sj}. (3.4)

Notice that instead of d dimensions, the feature f has 2d dimensions. The authors
call this ”polarity splitting”.

2. OMP-k: Settings like 1.

3. Soft thresholding: For fixed threshold α, they assign f as follows,

fj = max{0, D(j)Tx− α} (3.5)

fj+d = max{0,−D(j)Tx− α}. (3.6)

4. The natural encoding: If the dictionary is learned with SC, then the already-
learned codes are used. Same goes for OMP. For RBM and the autoencoder, one
computes the activation at the hidden nodes using the logistic sigmoid function g:

fj = g(W (j)x+ b) (3.7)

fj+d = g(−W (j)x+ b), (3.8)

where W = DT and W (j) is the jth row of W . For 5. and 6., the authors use the
dictionary as a linear map, i.e., f = DTx (this is like random projection, except
instead of decreasing dimensionality it increases it, assuming d > n).

The authors obtain the best result on CIFAR-10 by using OMP-1 for training, and
soft thresholding for encoding (and showing that the wider the dictionary—e.g., d =
6000—the better). They achieve the best result for NORB using random patches as the
dictionary, and SC for encoding. Same goes for Caltech 101, although this result trails
behind the state-of-the-art by 3.1%.

Here is how the authors use the dataset in the unsupervised feature learning phase.
In the case of CIFAR and NORB, they set x(i) ∈ Rn to randomly-chosen, normalized,
vectorized (6 × 6) × 3 patches. As for Caltech 101, the x(i) are the 128-dimensional
SIFT descriptors extracted from each random 16× 16 patch. Before sending it over to
the dictionary training algorithm, they perform ZCA-whitening on the whole dataset
X = [x(1), . . . , x(1600)].

Given the feature mapping parameterized by D, here’s an overview of the pipeline
that the authors set up for performing classification (see Figure ??). First, they extract
patches {x(i)} (with the size specified above) with a shift of one pixel for CIFAR-10
and NORB, and eight pixels for Caltech 101, covering the whole image. For CIFAR-10
and NORB, the x(i)s are the raw pixel values for the patch, whereas for Caltech 101,

23

ON ℓ1-REGULARIZED SQUARE LOSS MINIMIZATION FOR
RECONSTRUCTION

Figure 3.1: Image classification pipeline (Coates and Ng, 2011).

they are the values of the single SIFT descriptor extracted from the patch. For each
pair of training/encoding method, the authors use the dictionary D to get feature f (i)

for each x(i). So for example, for each 32 × 32 image in the CIFAR-10 dataset we get
(given the settings specified) 27 × 27 × 1600 × 2 = 2, 332, 800 dimensions! To reduce
the dimensionality of the feature space a pooling step is carried out (differently for each
dataset):

• CIFAR-10: The authors average the feature values over the four quadrants of the
image, yielding the final feature vector representing that image. (With pooling,
we are down to 4× 1600× 2 dimensions.)

• NORB: The authors perform two stages of downsampling on the original 108×108
images before extracting the patches. They do not mention their pooling strategy
after the feature mapping is done.

• Caltech 101: Here, the authors perform ”spatial pyramid” pooling. That is, they
perform max-pooling on the features over 4 × 4, then 2 × 2, and 1 × 1 grids in a
hierarchical manner. They concatenate the results to form the final feature vector
representing the image.

Having thus obtained a single feature vector for each image in the test and training sets,
the authors train a (actually many) linear SVM(s) to classify.

In my opinion, the results of this paper are interesting but not completely surprising.
Consider PCA and random projection (although they do not result in wide dictionaries
as the methods employed in this paper). We know that (in some tasks) random or-
thonormal weights are comparable to their ”data-aware” and learned counterparts, i.e.,
the principal components. The results also partly explain why the k-means algorithm—
employed in their preceding paper (Coates et al., 2011)—fared so well as the scheme for
learning the atoms of the dictionary.

3.2 Sparse Representation Classification

To provide background for our proposed method for regression in the next section, we
go over sparse representation classification (Wright et al., 2009). Sparse representation

24

3.3. SPARROW: SPARse appROximation Weighted regression

classification (SRC) is a multiclass classification method. SRC requires each test sample
to be reconstructed by only a few training samples. This is achieved by seeking sparse
representation of each test sample with respect to the dictionary of training samples. In
SRC, each sample is assigned a weight that accounts for the degree of its contribution
in the reconstruction of a test sample. This information allows for a more informed
decision on the class of a test sample.

Consider the training set {(xi, yi) : i = 1, . . . , n}, where xi ∈ Rp is a training
feature vector and yi ∈ {1, . . . , C}, its corresponding class label. The feature vectors
xi, i = 1, . . . , n, make up the columns of the dictionary D ∈ Rp×n. We assume that
the dictionary is overcomplete (p < n), otherwise we would first perform dimensionality
reduction on the features. Further, we assume that each column is normalized to unit
norm. For each test point x, we seek a sparse representation with respect to the dictio-
nary of training points. Solving the following optimization problem results in a sparse
representation a for the test point x,

min
a∈Rn

1

2
∥x−Da∥22 + λ∥a∥1. (3.9)

Based on the values in the vector a, a decision can be made about the class label of
x. Let Ic ∈ {1, . . . , n} be the indices of the columns of D that correspond to points
belonging to class c. Additionally, let the vector δc(a) be equal to a at the indices Ic
and zero elsewhere. A test sample x is assigned to the same class as the samples whose
linear combination best reconstructs x in the least squares sense, i.e.,

ĉ = argmin
c∈{1,...,C}

∥x−Dδc(a)∥2. (3.10)

In the regression setting, the outputs yi, i = 1, . . . , n are real numbers. Let y =
(y1, . . . , yn)

T be the vector containing the corresponding outputs for all of the training
samples in D. For a given test sample x, after solving the optimization problem in
(3.9), we predict its output ŷ, based on the following formula,

ŷ = yTa. (3.11)

This is reminiscent of k-nearest neighbor regression, with the advantage of having
the weight of the contribution of each sample provided in a.

3.3 SPARROW: SPARse appROximationWeighted regres-
sion

Section 3.3 is based on published work in the following paper:

P. Noorzad and B. L. Sturm. Regression with Sparse Approximations of Data. In
Proceedings of the European Signal Processing Conference, August 2012.

In this section we propose and study a new nonparametric method for local multi-
variate regression — sparse approximation weighted regression (SPARROW) — which
employs the sparse approximation of a point in terms of the regressors. A similar
nonparametric approach is k-nearest neighbor regression (k-NNR) (Härdle and Linton,

25

ON ℓ1-REGULARIZED SQUARE LOSS MINIMIZATION FOR
RECONSTRUCTION

1994), which assumes that the k regressors nearest to a test point produce similar regres-
sands. Both approaches can be considered variants of local polynomial kernel regression
(LPKR) (Ruppert and Wand, 1994), which estimates the regression function at a point
by fitting a polynomial at that point.

In addition to local methods like k-NNR and LPKR, considerable research has been
aimed at global nonparametric methods, for example, additive models (AMs) (Buja
et al., 1989), and sparse additive models (SpAM) (Ravikumar et al., 2009). In AMs,
univariate methods are employed to estimate a smooth function of each regressor —
in a model consisting of the sum of such univariate component functions — avoiding
the need to deal directly with multidimensional inputs. In SpAM, the aim is to reduce
the number of component functions of an additive model (Ravikumar et al., 2009).
Projection pursuit regression (PPR) (Friedman and Stuetzle, 1981) is an extension to
AMs that is able to model a more general class of functions.

Although methods for global parametric and nonparametric regression might mini-
mize the mean error over the entire dataset, it may not provide a good local fit. Figure
3.2, illustrates the ability of local methods in modeling data generated by an unknown
distribution. Local methods like LPKR assume a local parametric model for the data
(Cleveland and Devlin, 1988). In LPKR, one estimates the regression function at each
point by fitting a Taylor polynomial about that point. This can produce models that
are locally constant, locally linear, locally quadratic, etc., based on the order of the
polynomial. Central to this procedure is the minimization of a weighted sum of squares
error. Typically, the weights are defined by a decreasing function of the distance be-
tween two points. SPARROW defines these weights using the sparse approximation of
the test point. Implicit in this is the assumption that a test point is better modeled by
a sparse linear combination of the regressors than by its proximity to them.

The advantages of data modeling with sparsity constraints are well-documented
(Chen et al., 1998; Elad, 2010; Mallat, 2009), e.g., in uncovering the physiological code
of the mammalian primary visual cortex (Olshausen and Field, 1996), and in producing
sparse codes of natural sounds (Lewicki, 2002), images (Yang et al., 2009), musical audio
(Plumbley et al., 2010). Within the field of supervised learning, sparse representation
classification (Wright et al., 2009) can outperform standard approaches in difficult set-
tings, e.g., speech recognition in noise (Gemmeke et al., 2011), and face recognition
with occlusions, misalignments, and illumination variation (Wright et al., 2009; Wag-
ner et al., 2011). Sparsity has also been applied to variable selection, most notably in
the LASSO (Tibshirani, 1996). In the next sections, we define SPARROW, and show
how it is a variant of k-NNR and LPKR. Then we present several experimental results
comparing SPARROW with these and other well-known approaches.

3.3.1 Sparse Approximation Weighted Regression

Consider a dataset (or dictionary) ofN observations, D := {(xi, yi)}i∈Ω, where the input
xi = [x1i, . . . , xMi]

T ∈ RM is associated with the output yi ∈ R. Let Ω := {1, 2, . . . , N}
index the dictionary. In nonparametric regression, one assumes yi = f(xi) + ϵi, where
f(x) is an unknown but smooth function and ϵi is some error independent of xi. Given D
and a point z, SPARROW estimates the regression function f(z) by a linear combination
of the outputs

f̂(z) :=
∑
i∈Ω

li(z,D)yi (3.12)

26

3.3. SPARROW: SPARse appROximation Weighted regression

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Goal function
Dataset

(a) Our generated data set.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Dataset
Goal function
MLR:1st
MLR:2nd
MLR:3rd

(b) Multiple linear regression with first-, second-,
and third-order terms.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Dataset
Goal function
ε−SVR

(c) ϵ-support vector regression with an RBF ker-
nel.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Dataset
Goal function
4−NNR

(d) 4-nearest neighbor regression.

Figure 3.2: These figures illustrate the ability of local regression methods to model data
with an unknown distribution. The function generating the data is: yi = f(xi) + ϵi, where
f(x) = (x3 + x2) I(x) + sin(x) I(−x).

where li(z,D) is the ith effective weight, which SPARROW defines as a function of the
sparse approximation of z in D.

Instead of fitting a single model to the entire dataset, as in global parametric and
nonparametric regression, SPARROW fits parametric models about each test point z
by using, e.g., a zeroth, first-, or second-order Taylor expansion. We now discuss how
SPARROW defines the effective weights in (3.12) to estimate the regression function at
a given point.

27

ON ℓ1-REGULARIZED SQUARE LOSS MINIMIZATION FOR
RECONSTRUCTION

3.3.2 Definition of Effective Weights

To obtain the local quadratic estimate of the regression function at z, we can approxi-
mate f(x) about z by a Taylor polynomial of degree two

f(x) ≈ f(z) + (x− z)Tθz +
1

2
(x− z)THz(x− z) (3.13)

with θz := ∇f(z) the gradient of f(x), and Hz := ∇2f(z) its Hessian, both evaluated
at z. The problem now is to find f(z), θz and Hz, such that we minimize the locally
weighted squared error about z for all measurements in D, i.e.,

min
f(z),θz,Hz

∑
i∈Ω

αi(z)
[
yi − f(z)− (xi − z)Tθz −

1

2
(xi − z)THz(xi − z)

]2
(3.14)

where αi(z) is the ith observation weight, which can be defined in several ways, e.g.,
by a kernel function (Hastie and Loader, 1993; Härdle and Linton, 1994), or by sparse
approximation as done by SPARROW.

Now define the parameter supervector (Ruppert and Wand, 1994)

Θz :=
[
f(z),θz, vech(Hz)

]T
(3.15)

where vech(H) denotes the half-vectorization of the symmetric M ×M matrix, i.e., the
M(M +1)/2-vector formed by stacking the diagonal and lower triangular entries of Hz.
Define the diagonal matrix Az where its ith diagonal element is the observation weight
αi(z). By defining the matrix

Xz :=

1 (x1 − z)T vechT[(x1 − z)(x1 − z)T]
...

...
...

1 (xN − z)T vechT[(xN − z)(xN − z)T]

 (3.16)

we can express the minimization in (3.14) as

min
Θz

∥∥∥A1/2
z

[
y −XzΘz

]∥∥∥2
2

(3.17)

where the regressands vector y := [y1, y2, . . . , yN]T. The parameters defined by the
least-squares solution is (Ruppert and Wand, 1994)

Θ̂z =
(
XT

zAzXz

)−1
XT

zAzy (3.18)

provided XT
zAzXz is invertible. Finally, the local quadratic estimate of the regression

function at z is just the first element of Θz, i.e.,

f̂(z) = eT1
(
XT

zAzXz

)−1
XT

zAzy =
∑
i∈Ω

βiyi (3.19)

where e1 has a one in its first row, and zeros in all others. Hence, we see the ith effective
weight in (3.12) is

li(z,D) = eTi A
T
zXz

(
XT

zAzXz

)−1
e1 (3.20)

28

3.3. SPARROW: SPARse appROximation Weighted regression

In summary, SPARROW estimates the regression function at a point z by computing
(3.12) with effective weights given by (3.20). If we use only the first column of Xz in
(3.20), we produce a locally constant estimate of f(z), i.e.,

f̂(z) = (1TAz1)
−11TAzy =

∑
i∈Ω αi(z)yi∑
k∈Ω αk(z)

. (3.21)

Using M + 1 columns of Xz produces a locally linear estimate. And using all of Xz

results in a locally quadratic estimate. Using higher order polynomials as the local
parametric model reduces the bias of the estimate (Hastie and Loader, 1993; Ruppert
and Wand, 1994), but this comes at the price of increased variance and computation
time because the number of local parameters to be estimated increases exponentially.
Additionally, higher order polynomials do not offer significant improvement over the
quadratic model unless one seeks to estimate the gradient and the Hessian, i.e., θz and
Hz in (3.14) (Ruppert, 1996).

3.3.3 Definition of observation weights

Since the effective weights in (3.20) are a function of the observation weights in (3.14),
i.e., {αi(z) : i ∈ Ω}, the remaining problem is to define the observation weights. If we
define them in the locally constant model (3.21) by a kernel function, we produce the
Nadaraya-Watson regression (NWR) estimate (Nadaraya, 1964). In this direction, we
can define the weights by

αi(z) := K
(
S(z,xi)/h

)
(3.22)

where K : R 7→ R+ is a kernel function, h > 0 is the bandwidth, and S(z,xi) is the
distance

S(z,xi) := (z− xi)
TV−1(z− xi) (3.23)

where V is either a diagonal matrix of the unbiased estimates of the variances observed
in the dimensions of the regressors in D (in which case (3.23) is the scaled Euclidean
distance), or the unbiased estimate of the covariance of the regressors (in which case
(3.23) is the Mahalanobis distance).

When we define the weights of the locally constant model

αi(z) :=

{
d(z,xi), i ∈ Nk(z) ⊂ Ω

0, else
(3.24)

where Nk(z) is the index set of the k nearest regressors of z in D, then (3.21) produces
k-NNR (Härdle and Linton, 1994). If d(z,xi) := 1, then the bandwidth of the constant
kernel from z is at least as big as the largest distance between pairs of observations and
z, i.e., h ≥ maxi∈Nk(z) S(z,xi). In weighted k-NNR (Wk-NNR), we define this weight
as the reciprocal of the distance d(z,xi) := 1/S(z,xi).

Contrary to NWR and k-NNR, SPARROW instead defines the observation weights
from the sparse approximation of z in D. First, consider the matrix form of the nor-
malized regressors of the dictionary

D :=

[
x1

∥x1∥2
,

x2

∥x2∥2
, . . . ,

xN

∥xN∥2

]
. (3.25)

29

ON ℓ1-REGULARIZED SQUARE LOSS MINIMIZATION FOR
RECONSTRUCTION

Table 3.1: Data set information. The last column indicates the tuned parameter k in the
experiments involving k-NNR and Wk-NNR.

Data set # observations (N) # attributes (M) k

abalone 4,177 8 9
bodyfat 252 14 4
housing 506 13 2
mpg 392 7 4

For an input z, SPARROW finds a solution to z ≈ Ds such that s = [s1, s2, . . . , sN]T

has many zero elements. There are a variety of ways to produce sparse approximations
(see (Bruckstein et al., 2009; Tropp and Wright, 2010; Elad, 2010) for reviews). In this
work, we use the principle of basis pursuit denoising (BPDN) (Chen et al., 1995), which
poses the problem

min
s∈RN

∥s∥1 subject to
∥z−Ds∥22

∥z∥22
≤ ϵ2 (3.26)

where ϵ2 > 0 limits the signal to approximation error ratio. Finally, SPARROW defines
the ith observation weight using the sparse approximation weights

αi(z) :=

[
S(z,xi)

minj∈Ω S(z,xj)

]−1 si
∥z∥2

(3.27)

where si is the ith element of s. The purpose of the first coefficient is to weight by
1 the regressand of the regressor closest to z; and the purpose of dividing the sparse
approximation weight by ∥z∥2 is remove the influence of its length. Thus, as for Wk-
NNR, SPARROW weights more heavily an observation closer to the query, but unlike
Wk-NNR, only if it has a nonzero coefficient in its sparse approximation with D. When
we substitute the weights αi(z) from (3.27) into (3.21) we obtain the constant SPAR-
ROW (C-SPARROW) estimate. And when we use these weights in (3.20), but use only
the first M + 1 columns of Xz, (3.12) produces the linear SPARROW (L-SPARROW)
estimate. Using all columns of Xz produces the quadratic SPARROW (Q-SPARROW)
estimate.

3.4 Empirical Evaluation of SPARROW

We now compare the performance of SPARROW against several other other well-
established methods for local regression. In all cases, we use the standardized Euclidean
distance in (3.23). We test NWR and its linear counterpart, local linear kernel regres-
sion (LLKR) (Härdle and Linton, 1994; Hastie and Loader, 1993), which solves (3.18)
using the first M +1 columns of Xz in (3.16). For both NWR and LLKR we adopt the
Gaussian kernel in (3.22)

K(x) :=
1√
2π

e−x2/2. (3.28)

We also test k-NNR, Wk-NNR (Härdle and Linton, 1994), for which we tune k by nested
cross-validation. For a baseline, we test the global parametric approach of multiple linear

30

3.4. Empirical Evaluation of SPARROW

regression (MLR) (Hastie et al., 2009), which assumes a linear form of the regression
function

f(x) = [1,xT]b (3.29)

and b is defined to minimize the mean squared error

b = argmin
b′∈RM+1

∥y − [1 XT]b∥22 (3.30)

where the ith column of X is xi. To produce the sparse approximation for a test point
in (3.26), we use the Spectral Projected Gradient Method for ℓ1-minimization (SPGL1)
(van den Berg and Friedlander, 2008), with at most 20 iterations, and ϵ := 10−6.

We use four different datasets commonly used in regression (see Table 3.1).1 Except
for bodyfat, we standardize each dataset such that its dimensions are zero-mean and have
the same variance. Figure 3.3 shows the mean squared error (MSE) estimates of these
algorithms from 10 independent trials of 10-fold cross-validation. We see that while
MLR performs well for bodyfat and abalone, it performs poorly for mpg and housing.
On the other hand, we see that LLKR does extremely well for all datasets. This gain
in performance comes with an increase in computation as LLKR must compute (3.18).
Except for abalone and housing, we see that C-SPARROW performs nearly the same
as k-NNR and Wk-NNR. For housing, C-SPARROW appears to be almost as good as
LLKR. This is surprising since, 1) C-SPARROW makes no assumption of the number
of neighbors to be used for each test point, and 2) it is constructing a local constant
estimation.

Table 3.2 shows the performance of L-SPARROW as compared to C-SPARROW.
One might expect that L-SPARROW would perform better than C-SPARROW since it
is a higher-order model. However, a problem with local polynomial regression for higher
order polynomials (i.e., first- and second-order) is that when the input is locally rank
deficient, the solutions to (3.18) become unstable. We resolve the problem by solving
a regularized form of the weighted least squares optimization in (3.14). We use the ℓ2-
norm of the local parameters as the regularization term thus solving a ridge regression
problem (Hoerl and Kennard, 1970), i.e., instead of solving (3.17), we solve

min
Θz,λ

∥∥∥A1/2
z

[
y −XzΘz

]∥∥∥2
2
+ λ∥Θz∥22 (3.31)

where λ ≥ 0 is the ridge parameter. For a given λ, the solution becomes (Hastie et al.,
2009)

Θ̂(z) =
(
XT

zAzXz + λI
)−1

XT
zAzy. (3.32)

We tune λ in the same way as we do k, described above. Nevertheless, while we see the
performance of L-SPARROW improve with respect to using (3.18), it remains inferior
to C-SPARROW.

3.4.1 Conclusion

In this work, we have proposed an adaptive variation of local polynomial regression
methods: NWR, LLKR, k-NNR and Wk-NNR. NWR and LLKR use the entire dataset,

1mpg, abalone and housing are from http://archive.ics.uci.edu/ml/; bodyfat is from
http://lib.stat.cmu.edu/datasets/.

31

ON ℓ1-REGULARIZED SQUARE LOSS MINIMIZATION FOR
RECONSTRUCTION

Table 3.2: A comparison of the MSE estimates obtained on four data sets by 10 trials of 10-fold
cross-validation of C-SPARROW and L-SPARROW with and without regularization. The last
column denotes the ridge parameter used to obtain the L-SPARROW estimate.

Data set C-SPAR. L-SPAR. w/ R. L-SPAR. λ

abalone 5 16 988 10−3

bodyfat 5 ×10−5 35 ×10−5 960× 10−5 10−6

housing 10 45 4304 10−4

mpg 7 8 6335 10−3

Table 3.3: A comparison of the accuracy obtained by kNN and SRC on five multiclass classi-
fication data sets.

Data set n p #classes k kNN SRC

dna 2000 180 3 125 86 86
glass 214 9 6 2 70 65
iris 150 4 3 6 95 72
vowel 528 10 11 2 94 84
wine 178 13 3 7 97 99

and weight the regressand of each regressor by a kernel function. Alternatively, k-NNR
and Wk-NNR use the regressands of the k regressors closest to a point, to locally esti-
mate the regression function. With SPARROW, we propose using sparse approximation
to adaptively select which regressors to use, and the weights of their regressands to es-
timate the regression function at a given point. Our experiments show that constant
SPARROW can be a competitive regression algorithm. Our future work will analyze
the situations where it makes sense to describe data as a linear combination (including
negative weights) of labeled data. Furthermore, one can use other sparse approxima-
tion algorithms, such as greedy approaches, which are typically less computationally
expensive than convex optimization approaches like BPDN.

3.5 Comparing kNN with SRC

In Table 3.3, we present a comparison of the k-nearest neighbor classification algo-
rithm and sparse representation classification on multiclass classification data sets. The
data sets were chosen from the LIBSVM website for multiclass data sets2. We see that
sparse representation classification does not offer significant improvement over k-nearest
neighbor classification on most data sets.

2http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/multiclass.html

32

3.5. Comparing kNN with SRC

3

4

5

6

7

8

9

M
S

E

M
LR

NW
R

LL
KR

k−
NNR

W
k−

NNR

C−S
PARROW

(a) abalone dataset

0

5

10

15

20

25

M
S

E
 (

×
10

−
5)

M
LR

NW
R

LL
KR

k−
NNR

W
k−

NNR

C−S
PARROW

(b) bodyfat dataset

0

10

20

30

40

50

M
S

E

M
LR

NW
R

LL
KR

k−
NNR

W
k−

NNR

C−S
PARROW

(c) housing dataset

0

5

10

15

20

25

M
S

E

M
LR

NW
R

LL
KR

k−
NNR

W
k−

NNR

C−S
PARROW

(d) mpg dataset

Figure 3.3: Boxplots for 10-fold cross-validation estimate of mean squared error (100 indepen-
dent runs) for four different datasets. Each box delimits 25 to 75 percentiles, and the red line
marks the median. Extrema are marked by whiskers, and outliers by pluses.

33

Chapter 4

An Equivalence Between ϵ-SVR
and BPDN

“In ϵ-SV regression (Vapnik, 1995), our goal is to find a function f(x) that has at
most ϵ deviation from the actually obtained targets yi for all the training data,
and at the same time is as flat as possible. In other words, we do not care about
errors as long as they are less than ϵ, but will not accept any deviation larger than
this. This may be important if you want to be sure not to lose more than ϵ money
when dealing with exchange rates, for instance.”

—Smola and Schölkopf (2004)

In the paper entitled, “An Equivalence Between Sparse Approximation and Support
Vector Machines”, Girosi derives the (kernel) support vector regression (SVR) quadratic
programming problem in the framework of regularization theory. This is in contrast to
Vapnik’s original derivation of SVR using the structural risk minimization principle of
statistical learning theory. Girosi shows that under minor provisions and assumptions,
the technique of basis pursuit de-noising (BPDN) yields the same quadratic program-
ming problem. Chen, Donoho, and Saunders proposed BPDN as a tractable technique
for sparse approximation.

4.1 Reproducing Kernel Hilbert Space

Consider H as an inner product space on a set X over R. If H is complete with respect
to the metric induced by the inner product, then H is a Hilbert space. We denote the
inner product of the vectors f, g ∈ H by ⟨f, g⟩.

Definition 4.1.1. We say that H is a reproducing kernel Hilbert space if for every
x ∈ X , the linear functional Fx : H → R, where Fxf = f(x), is bounded

Since Fx is a bounded linear functional, from the Riesz representation theorem
it follows that for every x ∈ X , there exists a unique Kx ∈ H, with the following
reproducing property

Fx[f] = ⟨Kx, f⟩ = f(x) (4.1)

where f is a function in H. For t ∈ X , Kt is also in H and by the reproducing property
in Eq. (4.1) it follows that

Kt(x) = ⟨Kx,Kt⟩. (4.2)

34

4.1. Reproducing Kernel Hilbert Space

We define the function K : X × X → R for all y ∈ X as

K(x, y) = Ky(x) (4.3)

and call it the reproducing kernel (RK) of H. It follows from the uniqueness of Ky

that K is determined entirely by H. The following theorem establishes the relationship
between an RK and its corresponding reproducing kernel Hilbert space (RKHS):

Theorem 4.1.2. For every RKHS there exists a unique symmetric positive definite
function (called the RK), and conversely, for every symmetric, positive definite function
K on X × X , there exists a unique RKHS of functions on X with K as its RK.

The proof can be found in the first chapter of Wahba’s book on splines. We only go
over what the proof constructs. In particular, if H is an RKHS, then the RK is

K(x, y) = ⟨Kx,Ky⟩ (4.4)

where for each x, y ∈ X , Kx and Ky are the unique representer functions. Conversely,
given K, for all x, y ∈ X we define the representer function as

Kx(y) = K(x, y). (4.5)

We construct the RKHS as the completion of the space of functions H0 spanned by
{Kx : x ∈ X}, with the inner product defined as

⟨f, g⟩ =
m∑
i=1

n∑
j=1

αiβjK(xi, yj) (4.6)

where f and g are functions in H0,

f =

m∑
i=1

αiKxi (4.7)

g =

n∑
j=1

βjKyj . (4.8)

From these definitions we derive

K(x, xi) = ⟨Kx,Kxi⟩⟩, (4.9)

and also

⟨Kx, f⟩ =
⟨
Kx,

m∑
i=1

αiKxi

⟩
=

m∑
i=1

αi⟨Kx,Kxi⟩

=
m∑
i=1

αiK(x, xi)

=
m∑
i=1

αiKxi(x)

= f(x).

(4.10)

35

AN EQUIVALENCE BETWEEN ϵ-SVR AND BPDN

This last equation shows that the kernel is the representer of evaluation.

So far, we know that an RKHS H has a unique reproducing kernel K. Since K is a
positive definite function, it has a spectral decomposition of the form

K(x, y) =

∞∑
n=1

λnϕn(x)ϕn(y) (4.11)

where ϕ1, ϕ2, . . . is an orthonormal sequence of eigenfunctions in L2[X], and λ1 ≥ λ2 ≥
. . . ≥ 0, the corresponding eigenvalues. The eigenfunctions of the RK span its RKHS
H. Hence, every function in H can be represented as

f̂(x) =
∞∑
n=1

cnϕn(x) (4.12)

and has the following norm

∥f̂∥2H = ⟨f̂ , f̂⟩H =

∞∑
n=1

c2n
λn

. (4.13)

Functionals of the form in (4.13), known as smoothness functionals, associate smaller
values to smoother functions.

4.2 Support Vector Machines for Regression

We have a data set, D = {(xi, yi) : xi ∈ Rd, yi ∈ R, i = 1, . . . , l}, obtained by random
sampling (in the absence of noise) of an unknown function f . Our goal is to recover f , or
an estimate thereof, from D. This regression problem has many solutions because many
functions pass through a given set of points. We constrain the problem by assuming
that among all interpolating functions, the solution to our problem is the most smooth
(where smoothness entails close points to have close values). Let Φ[f̂] be a smoothness
functional. In ϵ-SVR, our goal is to find a function f̂ with at most ϵ deviation from the
training data, i.e., |f̂(xi)− yi| ≤ ϵ, for i = 1, . . . , l. The optimization problem is

minimize
1

2
Φ[f̂]

subject to

{
yi − f̂(xi) ≤ ϵ

f̂(xi)− yi ≤ ϵ
for i = 1, · · · , l.

(4.14)

We introduce slack variables ζi, ζ
∗
i to deal with the possible infeasibility of the con-

strained optimization problem in (4.14). The optimization problem becomes

minimize
1

2
Φ[f̂] + C

l∑
i=1

(ζi + ζ∗i)

subject to

yi − f̂(xi) ≤ ϵ+ ζi
f̂(xi)− yi ≤ ϵ+ ζ∗i
ζi ≥ 0
ζ∗i ≥ 0

for i = 1, · · · , l

(4.15)

36

4.2. Support Vector Machines for Regression

where the free parameter C > 0, controls the tradeoff between the smoothness of f̂
and the amount of deviation of f̂ — beyond ϵ — from the training data. The problem
in (4.15) is a convex programming problem and therefore has a unique minimum. By
introducing Lagrange multipliers (dual variables) to add the constraints to the objective
function, we form the Lagrangian of the problem in (4.15)

L(f̂ , ζ, ζ∗;α,α∗, r, r∗) =
1

2
Φ[f̂] + C

l∑
i=1

(ζi + ζ∗i) +
l∑

i=1

α∗
i (yi − f̂(xi)− ϵ− ζ∗i)

+

l∑
i=1

αi(f̂(xi)− yi − ϵ− ζi)−
l∑

i=1

(riζi + r∗i ζ
∗
i)

(4.16)

such that α, α∗, r, and r∗ satisfy nonnegativity constraints. The Lagrangian in (4.16)
has a saddle point at the optimal solution. Therefore, the optimization involves mini-
mizing (4.16) with respect to the primal variables f̂ , ζ, and ζ∗, and maximizing with
respect to the dual variables α, α∗, r, and r∗.

Notice that up to now, we haven’t considered any structure for f̂ or the smoothing
function. But as Cucker and Smale say

Learning processes do not take place in a vacuum.

In order to find the function f̂ , we need to specify the hypothesis space we are considering
for our search. Here, we make the assumption that the interpolating function f̂ belongs
to an RKHS H. Therefore, it can be represented as in (4.12), with its norm having the
form in (4.13). However, following Vapnik’s derivation of ϵ-SVR, we consider an explicit
bias for f̂ , that is

f̂(x) =

∞∑
n=1

cnϕn(x) + b. (4.17)

Substituting (4.17) for f̂ and (4.13) for Φ[f̂], the Lagrangian becomes

L(b, c, ζ, ζ∗;α,α∗, r, r∗) =
1

2

∞∑
n=1

c2n
λn

+ C
l∑

i=1

(ζi + ζ∗i)

+

l∑
i=1

α∗
i

(
yi −

∞∑
n=1

cnϕn(xi)− b− ϵ− ζ∗i

)
+

l∑
i=1

αi

(∞∑
n=1

cnϕn(xi) + b− yi − ϵ− ζi

)
−

l∑
i=1

(riζi + r∗i ζ
∗
i).

(4.18)

To get the dual objective function, we need to minimize the Lagrangian with respect
to the primal variables and eliminate them by substitution. We require that the partial

37

AN EQUIVALENCE BETWEEN ϵ-SVR AND BPDN

derivatives of L with respect to the primal variables f̂ (b and cn), ζi, and ζ∗i are zero

∂L
∂cn

= 0 =⇒ cn = λn

l∑
i=1

(α∗
i − αi)ϕn(xi) (4.19)

∂L
∂b

= 0 =⇒
l∑

i=1

(α∗
i − αi) = 0 (4.20)

∂L
∂ζi

= 0 =⇒ ri = C − αi (4.21)

∂L
∂ζ∗i

= 0 =⇒ r∗i = C − α∗
i (4.22)

We substitute (4.19) in our model for the interpolating function

f̂(x) =
∞∑
n=1

cnϕn(x) + b

=

∞∑
n=1

(
λn

l∑
i=1

(α∗
i − αi)ϕn(xi)

)
ϕn(x) + b

=
l∑

i=1

(α∗
i − αi)

∞∑
n=1

λnϕn(xi)ϕn(x) + b

=

l∑
i=1

(α∗
i − αi)K(x,xi) + b

(4.23)

where the last equality follows from (4.11). Similarly, we substitute (4.19) in our equa-
tion for the norm

∥f̂∥2 =
∞∑
n=1

c2n
λn

=
∞∑
n=1

λn

(l∑
i=1

(α∗
i − αi)ϕn(xi)

)(l∑
j=1

(α∗
j − αj)ϕn(xj)

)

=

∞∑
n=1

λn

l∑
i,j=1

(α∗
i − αi)(α

∗
j − αj)ϕn(xi)ϕn(xj)

=
l∑

i,j=1

(α∗
i − αi)(α

∗
j − αj)

∞∑
n=1

λnϕn(xi)ϕn(xj)

=

l∑
i,j=1

(α∗
i − αi)(α

∗
j − αj)K(xi,xj).

(4.24)

38

4.3. ϵ-SVR and Sparsity

Substituting (4.21), (4.22), (4.23), and (4.24) in the Lagrangian we obtain

L(α,α∗) =
1

2

l∑
i,j=1

(α∗
i − αi)(α

∗
j − αj)K(xi,xj) + C

l∑
i=1

(ζi + ζ∗i)

+

l∑
i=1

α∗
i

(
yi −

l∑
j=1

(α∗
i − αi)K(xi,xj)− b− ϵ− ζ∗i

)

+

l∑
i=1

αi

(l∑
j=1

(α∗
i − αi)K(xi,xj) + b− yi − ϵ− ζi

)

−
l∑

i=1

(C − αi)ζi −
l∑

i=1

(C − α∗
i)ζ

∗
i

= −1

2

l∑
i,j=1

(α∗
i − αi)(α

∗
j − αj)K(xi,xj)− ϵ

l∑
i=1

(α∗
i + αi) +

l∑
i=1

yi(α
∗
i − αi).

(4.25)
Given (4.21) and (4.22) and the fact that the dual variables satisfy nonnegativity con-
straints, we have the constraint, 0 ≤ αi, α

∗
i ≤ C, for i = 1, · · · , l. Thus, the dual

problem has the form

minimize − L(α,α∗)

subject to

0 ≤ αi, α

∗
i ≤ C for i = 1, · · · , l∑l

i=1(α
∗
i − αi) = 0

αiα
∗
i = 0 for i = 1, · · · , l

(4.26)

where instead of maximizing L, we’re minimizing −L. The last constraint is auto-
matically satisfied, otherwise, it would imply the existence of nonzero slacks in both
directions. We include it for our comparisons later.

Generally, in a convex minimization problem, the primal objective function is always
greater than or equal to the dual objective function at feasible primal and dual variable
values. The difference is called the duality gap. For the quadratic programming problem
in (4.26), it is shown that the duality gap is zero. Therefore, we find the optimal solution
by solving the dual problem. This means that for the regularized minimization problem
in (4.15), minimizing over the space of Hilbert functions amounts to minimizing over Rl.
This result is consistent with Kimeldorf and Wahba’s representer theorem (Kimeldorf
and Wahba, 1971).

4.3 ϵ-SVR and Sparsity

At a local minimum of a constrained optimization problem, the Karush-Kuhn-Tucker
conditions hold. Among them is the condition of complementary slackness, stating that
at a solution xi, the product between constraints and dual variables is zero. For the
problem in (4.26), two of these conditions are

αi(f(xi)− yi − ϵ− ζi) = 0

αi(yi − f(xi)− ϵ− ζi) = 0.
(4.27)

39

AN EQUIVALENCE BETWEEN ϵ-SVR AND BPDN

According to (4.27), when |f(xi) − yi| < ϵ, αi and α∗
i are forced to be zero. When

|f(xi) − yi| ≥ ϵ, αi or α∗
i may be nonzero. Points with nonzero αi or α∗

i are called
support vectors. By increasing the free parameter ϵ, we decrease the number of support
vectors, thereby increasing the sparsity of the solution in (4.23). The effect of the free
parameter C on the sparsity of the solution can only be shown empirically. When there
is no noise in the data, such as in our current problem setting, the optimal value for C
is infinity. Therefore ϵ is the only free parameter of this formulation (not counting the
kernel parameters).

4.4 Connection to Sparse Approximation

In sparse approximation, our goal is to approximate an unknown function f with a
linear combination of a fixed set Φ of functions

f̂(x;a) =

n∑
i=1

aiϕi(x) (4.28)

where Φ = {ϕi(x) : i = 1, . . . , n} is called the dictionary. The dictionary is usually
overcomplete. This implies that a in (4.28) is not unique since some elements of Φ are
linear combinations of other elements. We constrain the problem by requiring that a
be the sparsest solution: the solution with the minimum number of nonzero elements.
The following cost function represents a formulation of this problem

E(a) =
1

2
∥f(x)−

n∑
i=1

aiϕi(x)∥2L2
+ λ∥a∥pL0

(4.29)

where ∥.∥L0 counts the number of nonzero elements of a vector, and ∥.∥L2 is the L2 norm.
However, because of the L0 “norm”, minimizing the cost function in (4.29) is NP-hard.
To deal with the intractability of (4.29), Chen et al. (1995) proposed to minimize the
following convex cost function

E(a) =
1

2
∥f(x)−

n∑
i=1

aiϕi(x)∥2L2
+ λ∥a∥L1 (4.30)

and called it basis pursuit de-noising. The authors used the L1 norm as an approxima-
tion to the L0 norm.

We assign the dictionary functions by the help of the reproducing kernel K of an
RKHS H, that is,

ϕi(x) = K(x,xi), i = 1, . . . , l (4.31)

where {(xi, yi) : i = 1, . . . , l} is the dataset obtained by sampling f in the absence of
noise. Further, we replace the L2 criterion in (4.30) with the H norm, and set ϵ as the
regularization parameter. We get the following cost function

E(a) =
1

2
∥f(x)− f̂(x,a)∥2H + ϵ∥a∥L1 (4.32)

where the approximating function is

f̂(x,a) =

l∑
i=1

aiK(x,xi). (4.33)

40

4.4. Connection to Sparse Approximation

Assuming that the target function f has zero mean in H, i.e., it’s projection on the
constant function is zero (we’re not assuming that the constant function is in H)

⟨f, 1⟩H = 0 (4.34)

we require that the approximating function to also have zero mean in H

⟨f̂ , 1⟩H = 0. (4.35)

For this, we normalize K such that

⟨1,K(x,y)⟩ = 1. (4.36)

By substituting (4.33) in (4.35) and using (4.36) we arrive at the required constraint

⟨f̂ , 1⟩ =
⟨ l∑

i=1

aiK(x,xi), 1
⟩

=
l∑

i=1

ai⟨K(x,xi), 1⟩

=

l∑
i=1

ai = 0.

(4.37)

We expand the H norm in equation (4.32) of the cost function, that is

E(a) =
1

2
∥f∥2H −

l∑
i=1

ai⟨f(x),K(x,xi)⟩H

+
1

2

l∑
i,j=1

aiaj⟨K(x,xi),K(x,xj)⟩H + ϵ∥a∥L1 .

(4.38)

Recall the following two properties of a reproducing kernel

⟨K(x,xi),K(x,xj)⟩H = K(xi,xj) (4.39)

⟨f(x),K(x,xi)⟩H = f(xi) (4.40)

where in the last equation, f(xi) = yi, because the data are noiseless. The cost function
becomes

E(a) =
1

2
∥f∥2H −

l∑
i=1

aiyi +
1

2

l∑
i,j=1

aiajK(xi,xj) + ϵ∥a∥L1 . (4.41)

The vector a can be decomposed into its positive and negative parts. This implies that
its L1 norm can be written as

∥a∥L1 =

l∑
i=1

|ai| =
l∑

i=1

(a+i + a−i) (4.42)

41

AN EQUIVALENCE BETWEEN ϵ-SVR AND BPDN

such that a+i , a
−
i ≥ 0 and a+i a

−
i = 0 for i = 1, . . . , l. Using Eq. (4.42) and the fact

that ∥f∥2H is constant with respect to a+i and a−i , we arrive at the following quadratic
programming problem

minimize
a+i ,a−i

−
l∑

i=1

(a+i − a−i)yi +
1

2

l∑
i=1

(a+i − a−i)(a
+
j − a−j)K(xi,xj) + ϵ

l∑
i=1

(a+i + a−i)

subject to

a+i , a

−
i ≥ 0 for i = 1, · · · , l∑l

i=1(a
+
i − a−i) = 0

a+i a
−
i = 0 for i = 1, · · · , l

(4.43)
where the second constraint is the same as in Eq. (4.37). Renaming the coefficient
a+i to α∗

i , and a−i to αi, makes it clear that Eq. (4.43) specifies the same quadratic
programming problem as Eq. (4.26). We conclude that if

• the data are noiseless, i.e., yi = f(xi),

• the L2 norm is replaced by the H norm in the data fitting term of BPDN,

• the function f̂ has zero mean in the RKHS H,

• the atoms of the dictionary used in BPDN are defined as in (4.31),

• and, the regularization parameter in SVR tends to zero, in other words, C → ∞

then BPDN and ϵ-SVR are equivalent because they amount to the same quadratic
programming problem. The last condition translates into the fact that ϵ-SVR will
result in an interpolating function that is bound to overfit the data (because the effect
of the regularization term is dampened). It would be an interesting to analyze what
this says about the sparse approximation scheme that is this updated version of BPDN.

42

Chapter 5

Conclusion and Future Work

“Penalized logistic regression is not the only model that performs similarly to the
SVM; replacing the hinge loss with any sensible loss function will give a similar
result, for example, the exponential loss function of boosting (Freund and
Schapire, 1997) and the squared error loss (Zhang and Oles, 2001; Bühlmann and
Yu, 2003). These loss functions are all Bayes consistent. The binomial deviance
and the exponential loss are margin-maximizing loss functions, but the squared
error loss is not. The distance weighted discrimination (Marron and Todd, 2002)
is designed specifically for not maximizing the margin and works well with
high-dimensional data, which in a way also justifies that margin maximization is
not the key to the success of the SVM.”

—Hastie and Zhu (2006)

In this thesis, we have shown that ℓ1-regularized square loss minimization for clas-
sification is a success, both computationally and statistically. We have also shown
that ℓ1-regularized square loss minimization for reconstruction is not worth it. Simpler
methods like kNN classification and WkNNR are at least as good.

We propose four areas that hold promise for future investigation. One is the case
where the design is filled with nonlinear mappings of the observed variables. How will
this affect the optimization problem, and how will it affect the classification perfor-
mance. Rifkin et al. (2003) answer this problem for ridge regression (or regularized
least-squares classification). We are also interested to look more closely at the SVM
dual problem. Can this problem be solved efficiently with added sparsity constraints on
the dual variable α? Will this lead to a faster classifier that is comparable in perfor-
mance to the SVM? An important disadvantage of the lasso optimization principle is
that lasso solutions are not stable. We find it interesting to look at ways this problem
can solved. Finally, we are interested to know if kNN or WkNN are just as good for
feature learning as compared to sparse approximation methods in learning sparse rep-
resentations in for e.g., image classification tasks. Below, we will look at each of these
ideas in turn.

5.1 Nonlinear Regression

Consider the set {ϕi, i = 1, . . . , p} of p predetermined functions, with at least one non-
linear member. One can apply these functions to the original explanatory variables

43

CONCLUSION AND FUTURE WORK

{xi, i = 1, . . . , p} and get a nonlinear regression function resulting from the linear com-
bination of these mappings,

p∑
i=1

aiϕi(xi) + a0. (5.1)

One can fit this model using the same algorithms for fitting linear models, with the
benefit of obtaining a solution that models a nonlinear relationship between the response
and explanatory variables (Hesterberg et al., 2008). The same algorithms can be used
because the model is still linear in the parameters (the regression coefficients). The
model is only nonlinear in the explanatory variables.

One example of the application of this approach is Kernel Matching Pursuit (Vincent
and Bengio, 2002). In this setting, ϕi(x) = k(xi,x), where k is a bivariate function
that does not necessarily have to satisfy Mercer’s conditions. Another example is the
kernelized LASSO formulation (Wang et al., 2007).

5.2 Regularizing α: the SVM Dual Variable

Recall that our motivation for ℓ1-regularization was to get a classifier that was faster
than SVM in the sense that there are fewer kernel evaluations at test time,

f(x) =
∑

αik(xi, x). (5.2)

Also recall that we said we don’t have direct control over the sparsity of α, given the
SVM optimization problem. What if we aim to make α sparse directly? Let’s take
another look at the SVM dual optimization problem,

5.3 Instability and Non-uniqueness of Lasso Solutions

Lasso solutions are not unique when rank(X) ̸= p (Tibshirani, 2012). This is especially
the case in p > n settings. In this case, there exist multiple solutions to the lasso
optimization problem. The solution of the lasso optimization problem should thus be
expressed as

a ∈ argmin
a

1

2
∥y −Xa∥2 + λ∥a∥1. (5.3)

This causes two major issues. The first is that one solution can have a positive ith
coefficient while the other can have a negative ith coefficient. Additionally, two different
solutions can have different supports altogether.

This is problematic when the task at hand is that of variable selection not prediction.
However, what we are interested in is to study the effects of the inconsistencies of the
lasso solutions on its prediction performance and on its stability.

5.4 kNN or Matching Pursuit for Feature Learning

If sparse approximation is good for sparse coding, we would like to know if matching
pursuit or kNN can also be effective. The benefit of matching pursuit and kNN is that
they are computationally less expensive than sparse approximation by convex relaxation
methods like SPGL1.

44

References

Robert Andersen. Robust regression for the linear model. InModern Methods for Robust
Regression, pages 47–70. Sage Publications, 2008.

S. Arora, L. Babai, J. Stern, and Z. Sweedyk. The hardness of approximate optima
in lattices, codes, and systems of linear equations. In Proceedings of the IEEE 34th
Annual Foundations of Computer Science, pages 724–733, Washington, DC, USA,
1993. IEEE Computer Society.

Peter L. Bartlett, Michael I. Jordan, and Jon D. McAuliffe. Convexity, classification,
and risk bounds. Technical Report 638, Department of Statistics, U.C. Berkeley,
2003.

Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algorithm
for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on Com-
putational Learning Theory (COLT), 1992.

Stéphane Boucheron, Olivier Bousquet, and Gabor Lugosi. Theory of classification : A
survey of some recent advances. ESAIM: Probability and Statistics, 9:323–375, 2005.

Alfred M. Bruckstein, David L. Donoho, and Michael Elad. From sparse solutions of
systems of equations to sparse modeling of signals and images. SIAM Review, 51(1):
34–81, 2009.

Peter Bühlmann and Bin Yu. Boosting with the L2 loss: regression and classification.
Journal of the American Statistical Association, 98(462):324–339, 2003.

Andreas Buja, Trevor Hastie, and Robert Tibshirani. Linear smoothers and additive
models. The Annals of Statistics, 17(2):435–555, 1989.

S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit.
SIAM J. Sci. Comput., 20(1):33–61, Aug. 1998.

Scott S. Chen, David L. Donoho, and Michael A. Saunders. Atomic decomposition by
basis pursuit. Technical Report 479, Department of Statistics, Stanford University,
May 1995.

W. S. Cleveland and S. J. Devlin. Locally weighted regression: an approach to regression
analysis by local fitting. Journal of the American Statistical Association, 83(403):596–
610, 1988.

45

REFERENCES

Adam Coates and Andrew Ng. The importance of encoding versus training with sparse
coding and vector quantization. In International Conference on Machine Learning
(ICML), pages 921–928, 2011.

Adam Coates, Andrew Y. Ng, and Honglak Lee. An analysis of single-layer networks in
unsupervised feature learning. Journal of Machine Learning Research - Proceedings
Track, 15:215–223, 2011.

Felipe Cucker and Steve Smale. On the mathematical foundations of learning. Bulletin
of the American Mathematical Society, 39:1–49, 2002.

L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition.
Springer, 1996.

M. Elad. Sparse and redundant representations: From theory to applications in signal
and image processing. Springer, 2010.

John Fox. Robust regression: Appendix to an R and S-PLUS companion to applied
regression, 2002.

Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System Sciences,
55(1, part 2):119–139, 1997.

Jerome H. Friedman. Fast sparse regression and classification. In Paul Eilers, editor,
Proceedings of the 23rd International Workshop on Statistical Modelling, pages 27–57.
Statistical Modelling Society, 2008.

Jerome H. Friedman and Werner Stuetzle. Projection pursuit regression. Journal of the
American Statistical Association, 76(376):817–823, 1981.

Jort F. Gemmeke, Tuomas Virtanen, and Antti Hurmalainen. Exemplar-based sparse
representations for noise robust automatic speech recognition. IEEE Transactions on
Audio, Speech and Language Processing, 19(7):2067–2080, 2011.

Frederico Girosi. An equivalence between sparse approximation and support vector
machines. Neural Computation, 10:1455–1480, August 1998.

W. Härdle and O. Linton. Applied nonparametric methods. Technical Report 1069,
Yale University, 1994.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer-Verlag, 2 edition, 2009.

T. J. Hastie and C. Loader. Local regression: Automatic kernel carpentry. Statistical
Science, 8(2):120–129, 1993.

Trevor Hastie and Ji Zhu. Comment. Statistical Science, 21:352–357, 2006.

Tim C. Hesterberg, Nam H. Choi, Lukas Meier, and Chris Fraley. Least angle and ℓ1
penalized regression: A review. Statistics Surveys, 2:61–93, 2008.

A. E. Hoerl and R. W. Kennard. Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12:55–67, 1970.

46

REFERENCES

George S. Kimeldorf and Grace Wahba. Some results on Tchebycheffian spline functions.
Journal of Mathematical Analysis and Applications, 33:82–95, 1971.

Su-In Lee, Honglak Lee, Pieter Abbeel, and Andrew Y. Ng. Efficient L1 regularized
logistic regression. In Proceedings of the 21st National Conference on Artificial Intel-
ligence (AAAI), 2006.

M. S. Lewicki. Efficient coding of natural sounds. Nature Neuroscience, 5(4):356–363,
Mar. 2002.

Yi Lin. A note on margin-based loss functions in classification. Technical report,
Department of Statistics, University of Wisconsin, Madison, 2002.

Julien Mairal. Sparse Coding for Machine Learning, Image Processing and Computer
Vision. PhD thesis, Ecole Normale Superieure de Cachan, 2010.

S. Mallat. A Wavelet Tour of Signal Processing: The Sparse Way. Academic Press,
Elsevier, Amsterdam, 3rd edition, 2009.

J. Marron and M. Todd. Distance weighted discrimination. Technical report, School of
Operations Research and Industrial Engineering, Cornell University, 2002.

Hosein Mohimani, Massoud Babaie-Zadeh, and Christian Jutten. A fast approach for
overcomplete sparse decomposition based on smoothed ℓ0 norm. Transactions on
Signal Processing, 57:289–301, January 2009.

E. Nadaraya. On estimating regression. Theory of Probability and its Applications, 9
(1):141–142, 1964.

B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by
learning a sparse code for natural images. Nature, 381(6583):607–609, 1996.

Mark D. Plumbley, Thomas Blumensath, Laurent Daudet, Rémi Gribonval, and Mike E.
Davies. Sparse Representations in Audio and Music: from Coding to Source Separa-
tion. Proceedings of the IEEE, 98(6):995–1005, 2010.

Tomaso Poggio, Lorenzo Rosasco, and Andre Wibisono. Sufficient conditions for uni-
form stability of regularization algorithms. Technical Report CBCL-284, Center for
Biological and Computational Learning, MIT, December 2009.

Pradeep Ravikumar, John Lafferty, Han Liu, and Larry Wasserman. Sparse additive
models. Journal of The Royal Statistical Society (Series B), 71(5):1009–1030, 2009.

Ryan Rifkin. Everything old is new again: a fresh look at historical approaches in
machine learning. PhD thesis, Sloan School of Management, Massachusetts Institute
of Technology, 2002.

Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all classification. Journal of
Machine Learning Research, 5:101–141, December 2004.

Ryan Rifkin, Gene Yeo, and Tomaso Poggio. Regularized least-squares classification. In
Advances in Learning Theory: Methods, Model and Applications, volume 190, pages
131–153. IOS Press, 2003.

47

REFERENCES

Lorenzo Rosasco, Ernesto De Vito, Andrea Caponnetto, Michele Piana, and Alessandro
Verri. Are loss functions all the same? Neural Computation, 16(5):1063–107, 2004.

D. Ruppert. Local polynomial regression and its applications in environmental statistics.
Technical report, Cornell University, 1996.

D. Ruppert and M. P. Wand. Multivariate locally weighted least squares regression.
The Annals of Statistics, 22:1346–1370, 1994.

Alex J. Smola and Bernhard Schölkopf. A tutorial on support vector regression. Statis-
tics and Computing, 14:199–222, August 2004.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society (Series B), 58:267–288, 1996.

Robert Tibshirani. Regression shrinkage and selection via the lasso: a retrospective.
Journal of the Royal Statistical Society (Series B), 73(3):273–282, 2011.

Ryan J. Tibshirani. The lasso problem and uniqueness. arXiv:1206.0313v1, 2012.

J. A. Tropp and S. J. Wright. Computational methods for sparse solution of linear
inverse problems. Proceedings of the IEEE, 98(6):948–958, June 2010.

E. van den Berg and M. P. Friedlander. Probing the Pareto frontier for basis pursuit
solutions. SIAM Journal on Scientific Computing, 31(2):890–912, 2008.

Vladimir N. Vapnik. The nature of statistical learning theory. Statistics for Engineering
and Information Science. Springer-Verlag New York, Inc., New York, NY, USA, 1995.

Pascal Vincent and Yoshua Bengio. Kernel matching pursuit. Machine Learning, 48:
165–187, September 2002.

A. Wagner, J. Wright, A. Ganesh, Z. Zhou, H. Mobahi, and Y. Ma. Towards a practical
face recognition system: Robust alignment and illumination via sparse representa-
tion. To appear in IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 2011.

Grace Wahba. Spline models for observational data, volume 59 of CBMS-NSF Regional
Conference Series in Applied Mathematics. Society for Industrial and Applied Math-
ematics (SIAM), Philadelphia, PA, 1990.

Gang Wang, Dit-Yan Yeung, and Frederick H. Lochovsky. The kernel path in kernelized
lasso. In International Conference on Artificial Intelligence and Statistics (AISTATS),
2007.

Sijian Wang, Bin Nan, Saharon Rosset, and Ji Zhu. Random Lasso. Annals of Applied
Statistics, 5(1):468–485, 2011.

John Wright, Allen Y. Yang, Arvind Ganesh, S. Shankar Sastry, and Yi Ma. Robust
face recognition via sparse representation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 31:210–227, 2009.

48

REFERENCES

Huan Xu, Constantine Caramanis, and Shie Mannor. Sparse algorithms are not sta-
ble: A no-free-lunch theorem. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 34(1):187–193, 2012.

J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid matching using sparse
coding for image classification. In IEEE Conference on Computer Vision and Pattern
Recognition, 2009.

Guo-Xun Yuan, Kai-Wei Chang, Cho-Jui Hsieh, and Chih-Jen Lin. A comparison of
optimization methods and software for large-scale ℓ1-regularized linear classification.
Journal of Machine Learning Research, 11:3183–3234, 2010.

Guo-Xun Yuan, Chia-Hua Ho, and Chih-Jen Lin. Recent advances of large-scale linear
classification. Submitted, 2011.

Tong Zhang. Statistical behavior and consistency of classification methods based on
convex risk minimization. The Annals of Statistics, 32:56–134, March 2004.

Tong Zhang and Frank J. Oles. Text categorization based on regularized linear classifi-
cation methods. Information Retrieval, 4:5–31, 2001.

49

	Abstract
	List of Figures
	List of Tables
	Introduction
	Linear Classification and the SVM
	Linear Inverse Problems, Regression, and Regularization
	Sparse Approximation

	On 1-regularized Square Loss Minimization for Classification
	Classification and Convex Loss Minimization
	Why does 1-regularization induce sparsity?
	Empirical Evaluation of Lasso for Classification

	On 1-regularized Square Loss Minimization for Reconstruction
	Sparse Coding and Dictionary Learning for Feature Learning
	Sparse Representation Classification
	SPARROW: SPARse appROximation Weighted regression
	Empirical Evaluation of SPARROW
	Comparing kNN with SRC

	An Equivalence Between -SVR and BPDN
	Reproducing Kernel Hilbert Space
	Support Vector Machines for Regression
	-SVR and Sparsity
	Connection to Sparse Approximation

	Conclusion and Future Work
	Nonlinear Regression
	Regularizing bold0mu mumu : the SVM Dual Variable
	Instability and Non-uniqueness of Lasso Solutions
	kNN or Matching Pursuit for Feature Learning

