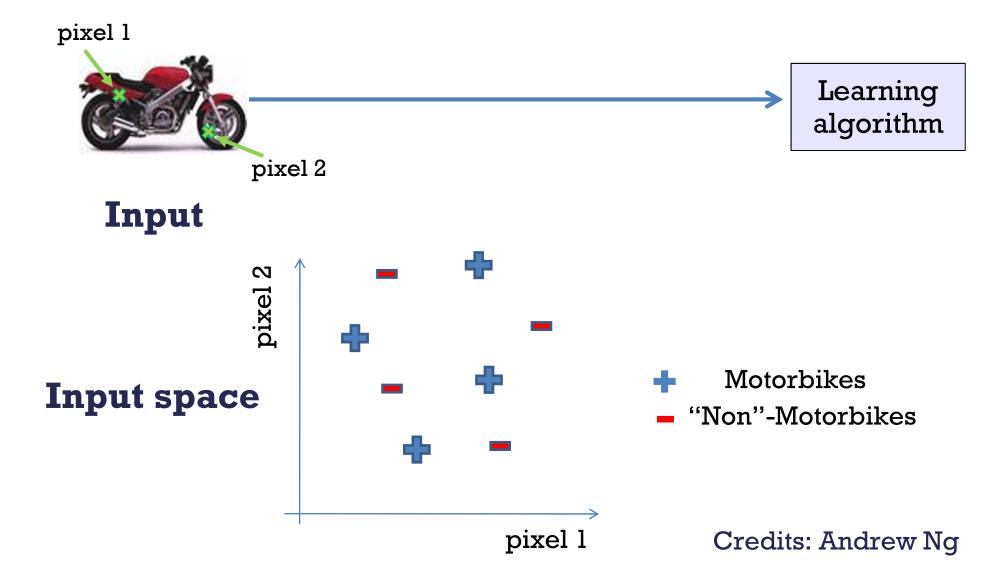
Feature Learning with Deep Networks for Image Classification

Pardis Noorzad

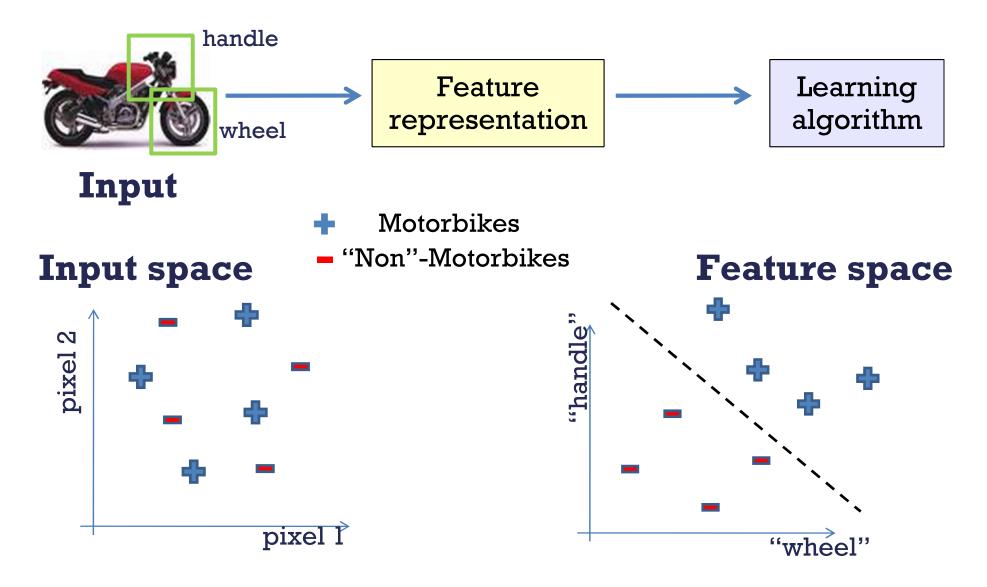
Department of Computer Engineering and IT Amirkabir University of Technology

Computer Vision Seminar Sharif University of Technology Ordibehesht 1390

Feature representation: pixels

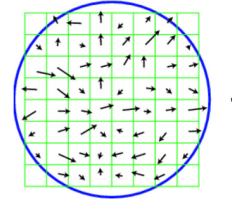


Feature representation: high level

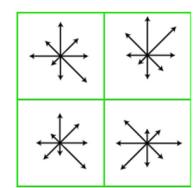


Feature representation

Computer vision features

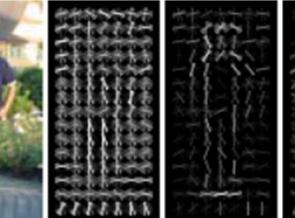


(a) image gradients



(b) keypoint descriptor

HoG



PCA-SIFT SURF GLOH LESH GIST etc.

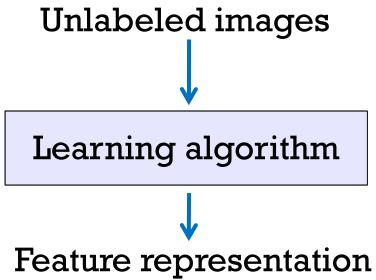
Feature representation

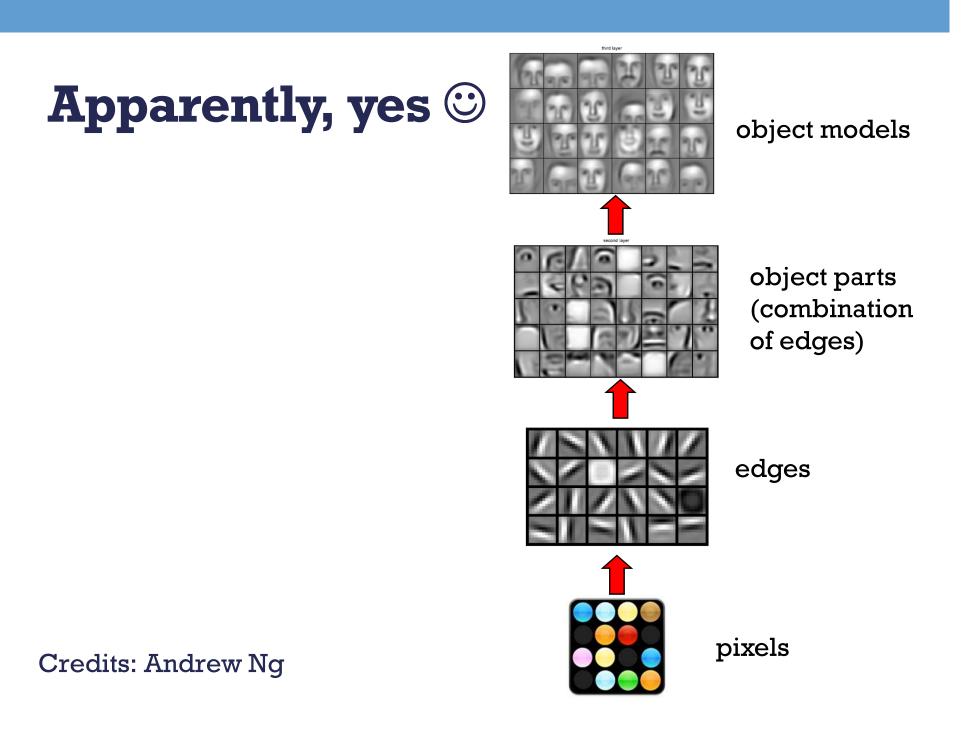
- Features are designed to capture **invariance**
 - Scale-invariance

Problems of hand-tuned features

- Needs expert knowledge
- Time-consuming and expensive
- Does not generalize to other domains
- But we can't possibly be able to hard-code and foresee all of them
 - Out-of-plane rotations
 - deformable parts, etc.

Can we learn features?





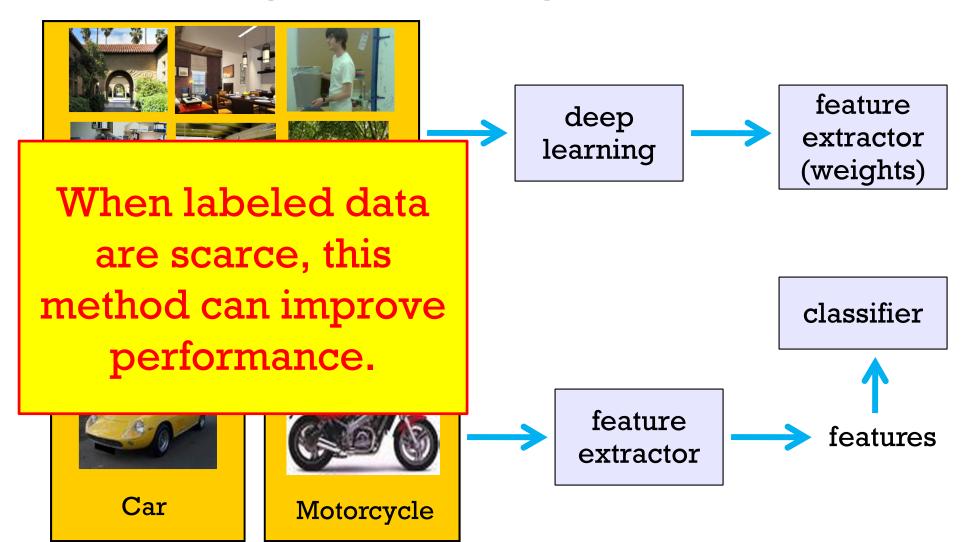
Self-taught learning

Unlabeled images (random internet images)

Motorcycle

Testing: What is this?

Self-taught learning: continued



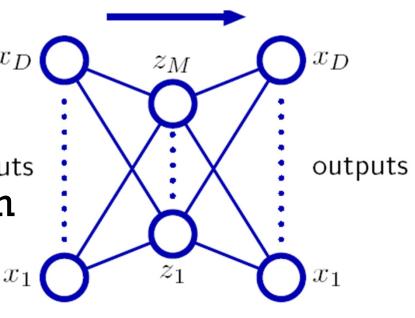
Neural nets for dimension reduction

- Nonlinear capabilities of Isomap and LLE were not brought by inherent
 nonlinear models of data
- Also, both methods use 'local' generalization
- Apart from supervised learning for classification, neural nets can be used in the context of unsupervised learning for dimensionality reduction

Autoassociative NN

(M.A.Kramer, 1991)

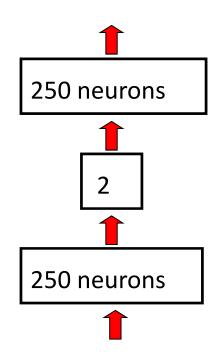
- DR achieved by using net with same number of input and outputs
- Optimize weights to inputs minimize reconstruction error
- Net tries to map each input vector onto itself



Credits: C.M. Bishop

Autoassociative NN: the intuition

- Net is trained to reproduce its input at the output
- So it packs as much information as possible into the central bottleneck



Autoassociative NN: optimization

- Number of hidden units is smaller than number of inputs
 - there exists a reconstruction error
- Determine network weights by minimizing the reconstruction sum-of-squares error:

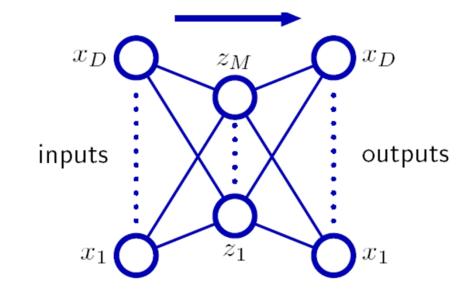
$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \|\mathbf{y}(\mathbf{x}_n, \mathbf{w}) - \mathbf{x}_n\|^2$$

Autoassociative NN and PCA

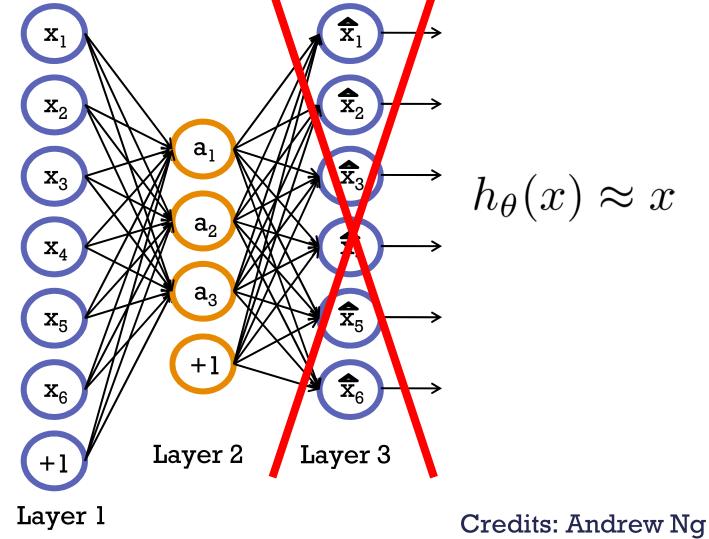
- Here's an interesting fact:
- If hidden units have linear activation functions,
- Error function has a unique global minimum
- At this minimum, the network performs a projection onto an **M**-dimensional subspace
 - spanned by the **first M PCs** of the data!

Autoassociative NN and PCA: continued

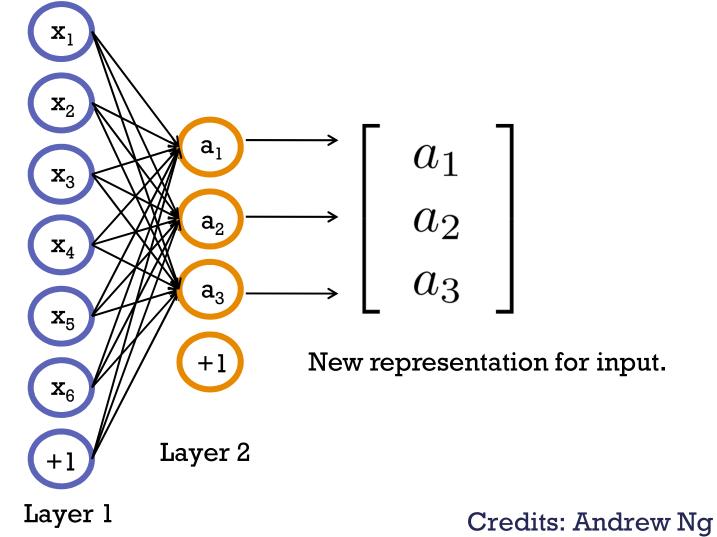
- Vector of weights leading into z_i's from a basis set which spans the principal subspace
- These vectors need not be orthonormal



Unsupervised feature learning with neural networks



Unsupervised feature learning with neural networks

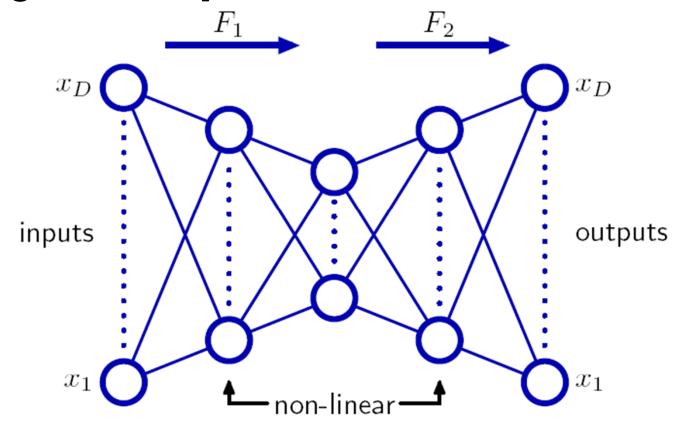


Autoassociative NN and PCA: continued

- **BUT**, even with nonlinear activation functions for the hidden units,
 - the min error solution is again the projection onto the PC subspace
 - so there is no advantage in using 2-layer
 NNs to perform DR
 - standard PCA techniques based on SVD are better

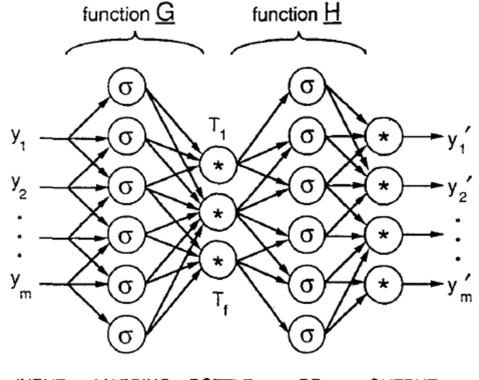
Autoassociative NN: nonlinear PCA

What we need is additional hidden layers
 – e.g. the 4-layer net below



Autoassociative NN: NLPCA

- Training to learn the identity mapping is called
 - self-supervised
 backpropagation or
 - autoassociation
- After training, the combined net has no utility
 - and is divided into two single-hidden layer nets G and H



INPUT	MAPPING	BOTTLE-	DE-	OUTPUT
LAYER	LAYER	NECK	MAPPING	LAYER
		LAYER	LAYER	

NLPCA: discussion

- Start with random weights,
- The two nets (**G** and **H**) can be trained together by minimizing the discrepancy between the original data and its reconstruction
- Error function as before (sum-of-squares)
 - no longer a quadratic function of net params. \otimes
- Dimension of subspace must be specified before training 🛞

Autoencoder

(G.E. Hinton and R.R. Salakhutdinov, 2006)

It was known since the 1980s that backpropagation through deep neural nets would be very effective for nonlinear dimensionality reduction -- subject to:

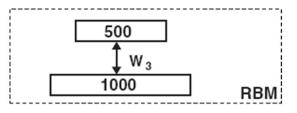
- fast computers ... OK
- big data sets ... OK
- good initial weights ...

Autoencoder: continued

- BP = backpropagation (CG methods, steepest descent, ...)
- Fundamental problems in training nets with many hidden layers ("deep" nets) with BP
 - learning is slow, results are poor
- But, results can be improved significantly if **initial weights** are close to solution

Autoencoder: pretraining

- Treating each neighboring set of two layers like an RBM
 - to approximate a good initial solution
- RBM = Restricted Boltzmann Machine
 - we'll explain later

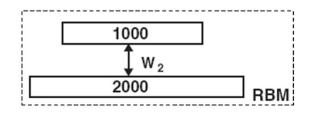


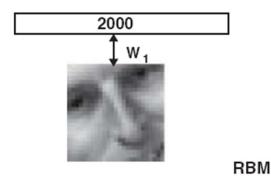
Тор

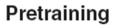
RBM

30

500

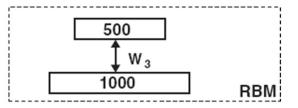






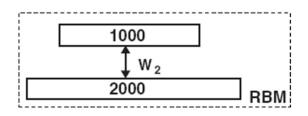
Autoencoder: continued

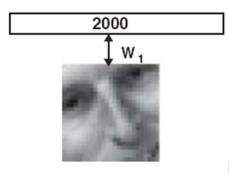
- The learned features of one RBM are used as data for training the next RBM in the stack
- The learning is unsupervised.



30

500





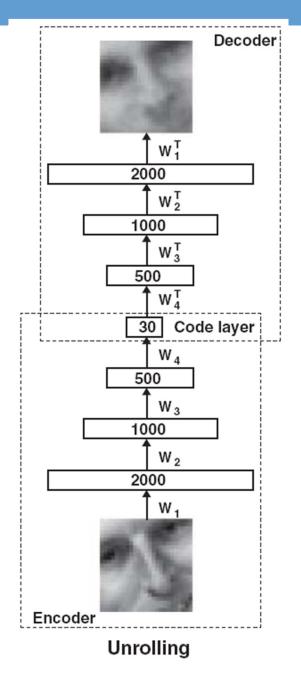
Top

RBM

Pretraining

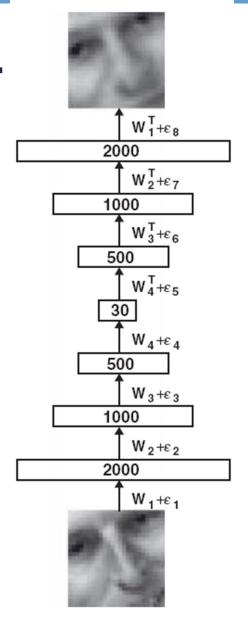
Autoencoder: unrolling

- After pretraining, the model is unfolded
- Produces encoder and decoder networks that use the same weights



Autoencoder: fine-tuning

- Now use BP of error derivatives to fine-tune ⁽²⁾
 So we don't run BP until we
- have good initial weights



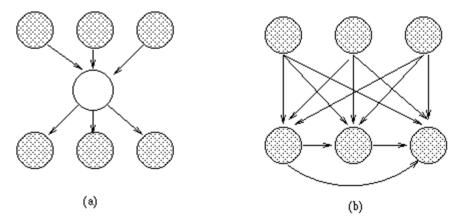
Fine-tuning

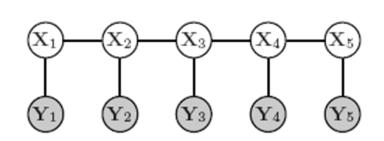
Autoencoder: results

real 2345678 data 4 56 30-D deep auto 30-D logistic PCA 30-D PCA

Graphical model

• "A graphical model is a probabilistic model for which a graph denotes the conditional independence structure between random variables." --Wikipedia

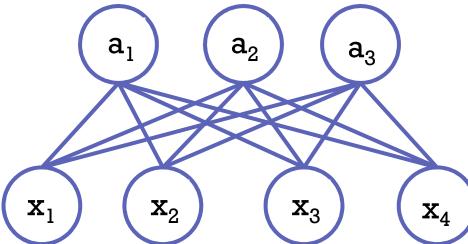




Credits: Leonid Sigal

Credits: Kevin Murphy

Restricted Boltzmann machine (RBM)



Layer 2: $[a_{1,}a_{2}, a_{3}]$ (binary-valued)

Input $[x_{1}, x_{2}, x_{3}, x_{4}]$

MRF with joint distribution.

Simplest graphical model with hidden variables

likelihood estimation:

Gi

$$\max_{W} P(x) = \max_{W} \sum_{a} P(x, a)$$

Deep belief network (DBN)

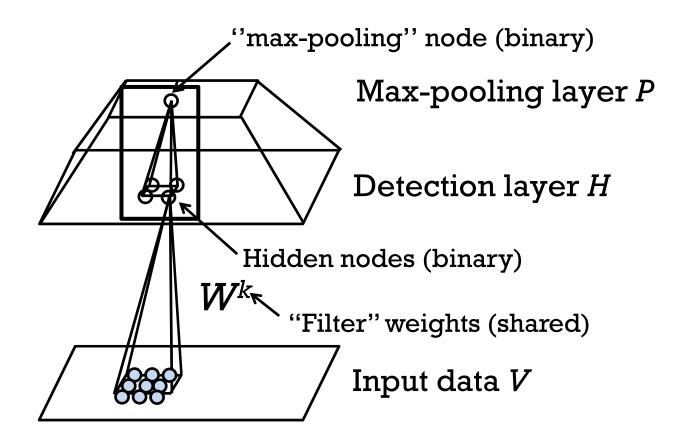
(G.E.Hinton et al., 2006)

- First train a layer of features that receive input directly from the pixels (an RBM)
- Then treat the activations of the trained features as if they were pixels and learn features of features in a second hidden layer.

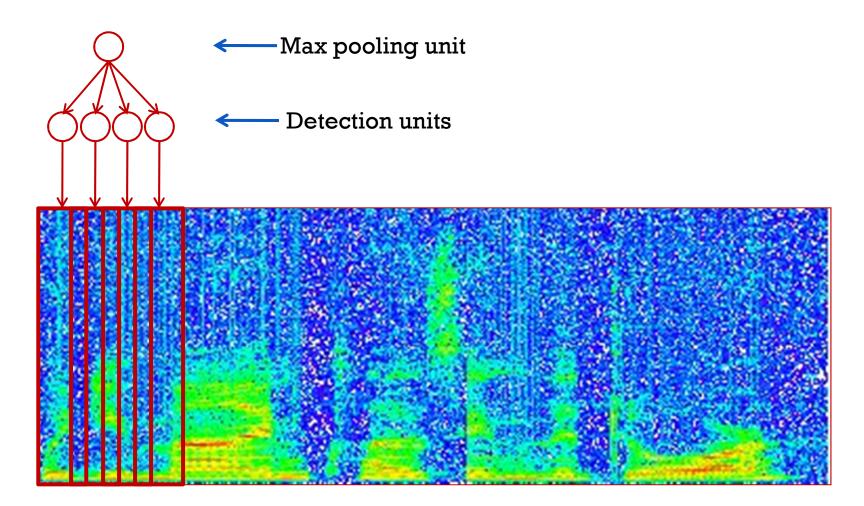
It can be proved that each time we add another layer of features we improve a variational lower bound on the log probability of the training data. – G. Hinton

Convolutional DBN

(Lee et al., ICML'09)



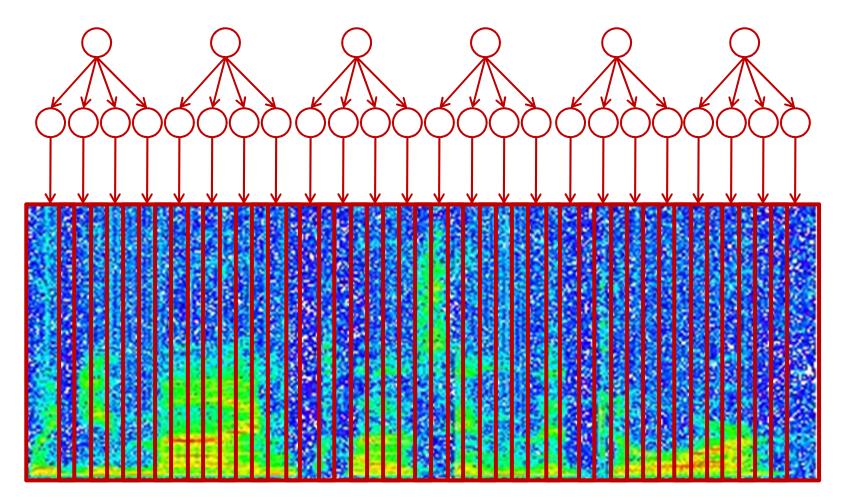
Convolutional DBN for audio



Spectrogram

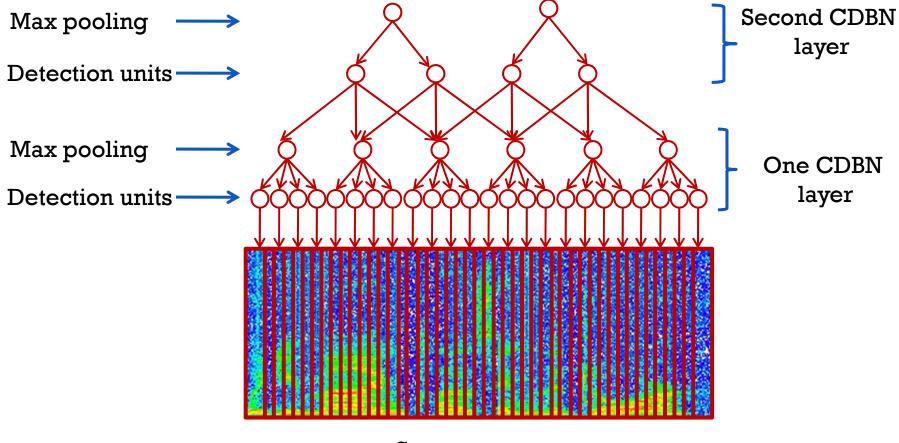
Convolutional DBN for audio

(Lee et al. NIPS'09)



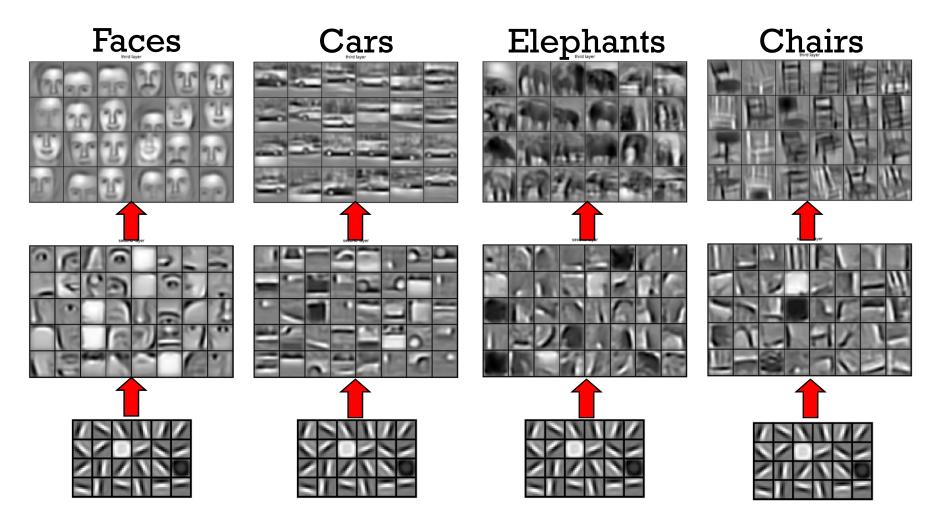
Spectrogram

Convolutional DBN for audio



Spectrogram

Some results (Lee et al., ICML'09)



Some results on Caltech 101

(Lee et al., ICML'09)

Training Size	15	30
CDBN (first layer)	$53.2 \pm 1.2\%$	$60.5 \pm 1.1\%$
CDBN (first+second layers)	$57.7 \pm 1.5\%$	$65.4{\pm}0.5\%$
Raina et al. (2007)	46.6%	-
Ranzato et al. (2007)	-	54.0%
Mutch and Lowe (2006)	51.0%	56.0%
Lazebnik et al. (2006)	54.0%	64.6%
Zhang et al. (2006)	$59.0 {\pm} 0.56\%$	$66.2 \pm 0.5\%$

What to take away...

- Feature learning with deep networks can work better than single hand-tuned features on some classification tasks.
- Unsupervised feature learning can boost classification performance when labeled data is scarce.
- "when a function can be compactly represented by a deep architecture, it might need a very large architecture to be represented by an insufficiently deep one" – Y. Bengio

References

- Bay Area Vision Meeting -- "Unsupervised Feature Learning and Deep Learning" by Andrew Ng (<u>http://www.youtube.com/watch?v=ZmNOAtZIgIk</u>)
- 2. "Pattern Recognition and Machine Learning" by Christopher M. Bishop
- 3. ECCV 2010 Tutorial on Feature Learning (http://ufldl.stanford.edu/eccv10-tutorial/)
- 4. "Computer Vision: Algorithms and Applications" by Richard Szeliski (<u>http://szeliski.org/Book/</u>)
- 5. UCL tutorial on "Deep Belief Nets" by Geoff Hinton

Thank you! Have a good evening ©