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We’ll be talking about… 

I. Data analysis 

II. Properties of high-dimensional data 

III. Some vocabulary 

IV. Dimensionality reduction methods 

V. Examples 

VI. Discussion 



Era of massive data collection 

 

• Usual data matrix: D rows, N cols 

• Rows give different 

attributes/measurements 

• Columns give different observations 



N points in a D-dimensional space 

• Term-document data 

– N is the number of documents ~ millions 

– D is the number of terms ~ thousands 

• Consumer preference data (Netflix, 

Amazon) 

– N is the number of individuals ~ millions 

– D is the number of products ~ thousands 



Problem 

• Assumption: D < N and N ���� ∞  

• Many results fail if D > N 

• We might have D ���� ∞, N fixed 

• Very large number of measurements 
– relatively few instances of the event 

• a.k.a. the large p, small n problem 
– a.k.a.  High Dimension Low Sample Size 
(HDLSS) problem 

 



Example 

• Breast cancer gene 
expression data 

• Number of 
measured genes:  

• D = 6,128 

• Number of tumor 
samples:  

• N = 49 

 



Another example 

• Biscuit dough data 

• Number of NIR 
reflectance 
measures:  

• D = 23,625 

• Number of dough 
samples:  

• N = 39 

 



Another example:  

computer vision 

• Scene recognition 

• Raw Gist feature 

dimension:  

• D ~ 300 - 500 

• Number of color 

image samples:  

• N ~ 2600  

 



And another: 

• Video concept 
detection 

• Multimedia 
feature vector:  

• D ~ 2896 

• Number of video 
samples:  

• N ~ 136 

 



So what? 

• D is high in our data analysis 

problems… 

• Properties of high dimensional data 

should be considered 

• Hughes phenomenon 

• Empty space phenomenon 

• Concentration phenomenon 

 



Hughes phenomenon 

• a.k.a. the curse of dimensionality 
(R. Bellman, 1961) 

• Unit cube in 10 dimensions, 
discretized with 1/10 spacing � 1010 

• Unit cube in 20 dimensions, same 
accuracy � 1020 points 

• Number of samples needed grows 
exponentially with dimension 



Empty space phenomenon 

• Follows from COD and the fact that: 

• amount of available data is limited 

• � high-dimensional space is sparse 

• You expect an increase in 
discrimination power (by employing 
more features) 

–but you lose accuracy 

–due to overfitting 



Empty space phenomenon 

(L. Parsons et al., 2004) 



Concentration phenomenon 

• “When is nearest neighbor 
meaningful”, (Beyer et al., 1999) 

• In high dimensions, under certain 
conditions,  

–distance to nearest neighbor 
approaches distance to farthest 
neighbor 

–contrast in distances is lost 

 

 



Concentration: continued 

• When this happens, there is no 

utility in finding the “nearest 

neighbor” 

 
Query point Query point 



Concentration: continued 

• Definition. Stable query 

 

 

 
Dmin 

Dmax 

(1+ε)Dmin Stable 

query 



Concentration: continued 

• Definition. Unstable query 

 

 

 

DMAX ≤ (1 + ε) DMIN  

Dmin 
Dmax 

(1+ε)Dmin 



Concentration: continued 

• It is shown that (under some 

conditions), for any fixed ε > 0,  

– as dimensionality rises,  

– the probability that a query is unstable  

– approaches 1 

 

 limD�∞ Pr[DMAXD ≤ (1 + ε) DMIND] = 1  



Concentration: i.i.d. case 

• Here are some results for i.i.d. 

dimensions 

• Assume:  

• random vector  y = [y1, …, yD]
T 

• yi’s are i.i.d. 

• We’ll show: 

• successful drawings of such random 

vectors yield almost the same norm 

 

 



Concentration: continued 

The norm of random vectors grows 

proportionally to D1/2, but the 

variance remains constant for 

sufficiently large D. 



Concentration: continued 

Chebyshev’s inequality 

 

(D-1)-sphere 



Concentration:  simulation results 

The relative error tends to zero, meaning that 

the normalized norm concentrates. 



Concentration: continued 

• Where is concentration an issue? 

• NN search: collection of data points, 

and query point, find data point 

closest to query point 

– e.g. used in kNN classification 

• Particular interest from vision community 

– each image is approximated with high-

dimensional feature vector 

 

 



Concentration: questions 

1. How restrictive are the conditions?  
– sufficient but not necessary 

2. When the conditions are satisfied, at what 
dimensionality do distances become 
meaningless? 

– about 10-15 (depends on dataset) 

3. How can we tell if NN is not meaningful 
for our dataset? 

– statistical tests? (Casey and Slaney, 2008) 

– how can we fight it? (Houle et al., 2010) 

 

 
 



Visualization 

• Can be done for up to 4 Ds. 

 



Two approaches to reduce D 

• Feature selection 
– a subset of variables chosen 

– techniques are usually supervised 

• those not correlated with output are 
eliminated 

• Feature extraction 
– even when assuming all variables are 
relevant 

– detect and eliminate dependencies 

the focus of 

this talk 



Vocabulary 

• So you can develop an intuition 
about some of the words in the 
literature 

• Subspace 

• Manifold 

• Embedding 

• Intrinsic dimensionality 

 



Subspace 

three 1D subspaces of ℝ2 

three 2D subspaces of ℝ3 



Manifold-- but first some topology 

Spatial properties that 
are preserved under 
continuous 
deformations of 
object 

• Twisting, stretching 

• Tearing, gluing 

“a topologist can't distinguish a coffee mug 
from a doughnut” 



Manifold 

locally 

isomorphic 

to 

Euclidean 
space 



Embedding and p-manifold 

• Embedding 

• P-manifold 

• Every curve is 

a 1-manifold 

• Every surface 

is a 2-manifold 

 



Dimensionality reduction (DR) 

• Re-embedding a 
manifold from a 
high-dimensional 
space to a low-
dimensional one 

• s.t. manifold 
structure is 
preserved 
(connectivity and 
local 
relationships) 

• one-to-one 
mapping 

 
 



Data dimension and intrinsic 

dimension 

Data 

dimensionality = 

3 
 

Intrinsic 

dimensionality = 

2 

Data does not completely fill the embedding 
space. 



A new embedding 

Data 

dimensionality = 

2 
 

Intrinsic 

dimensionality = 

2 

Embedding space better filled. 



Datasets 

(J. A. Lee, and M. Verleysen, 2007) 



Datasets: intrinsic dimensionality 

• It depends how you define the information 

content of data 

• Several algorithms have been proposed to 

estimate it  (J. A. Lee, and M. Verleysen, 2007) 

 

 



Subspace learning (linear DR) 

• Assume a linear model of data  
– (a linear relation between observed and latent 
variables) 

• We’ll look at  

–PCA (Principal Component 
Analysis)  

–classical metric MDS 
(Multidimensional Scaling) 

–RP (Random Projections) 

 



PCA (H. Hotelling, 1933) 

Given: data 

coordinates 



PCA: continued 



MDS (I. Borg and P. Groenen, 1997) 

Given: matrix 

of scalar 

products 



MDS: continued 



MDS: discussion 

• Widely used and developed in 

human sciences 

–particularly psychometrics 

• People are asked to give qualitative 

separation between objects 

• So each object is characterized by 

distances to other objects 



Neither S nor Y but distances available 

A technique called 

double centering 

squared Euclidean 

distance 



Double centering: continued 



PCA/MDS: results 



PCA/MDS: results 



PCA/MDS: discussion 

• Metric MDS and PCA give the same 
solution 

• Both focus mainly on retaining 
large pairwise distances, instead 
of small pairwise distances which is 
more important 

• Both may consider two points as 
near points, whereas their distance 
over the manifold is much larger  



Random projections  
(W. B. Johnson and J. Lindenstrauss, 1984) 

• A linear method 

• Simple yet powerful 

• Randomly chosen low-
dimensional subspace  

• the projection doesn’t depend on 
the data 

• a “data-oblivious” method 



RP: algorithm 

• Here’s how to obtain the P××××D linear 

transform R (Dasgupta, 2000) 

1. set each entry of R to an i.i.d. ~N(0,1) 

value 

2. make the P rows of the matrix 

orthogonal using the Gram-Schmidt 

algorithm 

3. normalize rows to unit length 



RP: the theory behind the algorithm 

• JL Thm.  A set of points of size n in a 

high-dimensional Euclidean space, 

can be mapped into a q-dimensional 

space, q≥O(log(n)/ε2), such that the 

distance between any two points 

changes by only a factor of 1± ε.   

– (W. B. Johnson and J. Lindenstrauss, 1984) 



RP theory: continued 

 (S. Dasgupta and A. Gupta, 1999) 

• A matrix whose entries are normally 

distributed represents such a mapping 

with probability at least 1/n, therefore 

doing O(n) projections will result in an 

arbitrarily high probability of 

preserving distances. 

• Tighter bound obtained:  

–q≥4*(ε 2/2 – ε3/3)-1ln(n)  

 



RP: discussions 

• It is shown that RP underperforms PCA 
as a preprocessing step in classification 
(but still remains comparable) 

– (D. Fradkin and D. Madigan, 2003) 

• But, it is computationally more 
attractive than PCA and can replace it 

– e.g. when initial dimension is ~6000 

– PCA is O(D3) vs. RP which is O(P2D) 

– with some loss of accuracy, even faster 
versions of RP have been proposed 



Manifold learning 

• Manifold assumption 

–“data lies on a low-dimensional 
manifold in the high-dimensional 
space” 

• It’s an assumption that helps reduce 
the hypothesis space 

–A priori information on the support of 
the data distribution 

 



Manifold learning (nonlinear DR) 

• First we’ll look at  
• Isomap (Isometric feature map) and  

• LLE (Locally Linear Embedding) 

• Easy to understand/explain 

• Both build a graph G using K-rule: O(N2) 
– A discretized approximation of the manifold, 
sampled by the input 

• Both published in Science in 2000, and lead 
to the rapid development of spectral 
methods for NLDR 

• ~3840 and ~3735 citations, respectively 
 



Nonlinear DR: continued 

• We’ll also be looking at 

• Autoassociative neural networks 
and 

• Autoencoders 
• use a new technique for training 
autoassociative neural nets  

• and an overview of some other NLDR 
algorithms 

• so hang on to your seats! 
 



Isomap (J. Tenenbaum et al., 2000) 

1) Build graph G with K-rule 

2) Weigh each edge by its 

Euclidean length (weighted graph) 

3) Perform Dijkstra’s algorithm, 

store square of pairwise 

distances in ∆ 

4) Perform MDS on ∆ 



Isomap: results 

A. N.A. 



Isomap: discussion 

• A variant of MDS 

– estimates of geodesic distances are 

substituted for Euclidean distances 

(L. K. Saul et al., 2005) 



Isomap: discussion 

• A variant of MDS 
–Nonlinear capabilities brought by graph 
distances and not by inherent nonlinear 
models of data 

• Computation time dominated by 
calculation of shortest paths 

• Guaranteed convergence for 
developable manifolds only 
– Pairwise geodesic distances computed between points 
of the P-manifold, can be mapped to pairwise Euclidean 
distances measured in a P-dimensional Euclidean space 



Isomap: discussion 

• Dijkstra’s algorithm solves the 

single-source shortest path 

problem 

• So we need to run Dijkstra for each 

vertex 

• More efficient than Floyd-Warshall 

because graph is sparse 



Isomap: discussion 

• Results of Isomap strongly depend on 
the quality of the estimation of 
geodesic distances 

• If data set is sparse, (and no shortcuts 
take place) 
–graph distances are likely to be 
overestimations 

• If data manifold contains holes, 
paths need to go around holes 
–graph distances are overestimations 



Isomap: discussion 



Isomap: estimation of intrinsic 

dimension 

• A single run of PCA, MDS, or 

Isomap 

• Gap in eigenvalues  

-PCA, MDS: 2 

-Isomap:1 



LLE (S. Roweis and L. Saul, 2000) 

1) Build graph G with K-rule 

2) Find the weight matrix W for 
reconstructing each point from its 
K neighbors 

3) Find the low-dimensional 
coordinates X, that are 
reconstructed from weights W 
with minimum error 

 



LLE: step 2) 

2) Find the weight matrix W for 

reconstructing each point from 

its K neighbours 

 



LLE: step 3) 

3) Find the low-dimensional 

coordinates X, that are 

reconstructed from weights W 

with minimum error 

 



LLE step 3): discussion 

• Optimal embedding is found by 

computing the bottom P+1 

eigenvectors of M 



LLE: results 

A. A. 



LLE: discussion 

• Like MDS, LLE uses EVD, which is 
purely linear 
– Nonlinear capabilities of LLE come from the 
computation of nearest neighbors 
(thresholding) 

• Unlike MDS, cannot estimate intrinsic 
dimensionality (no telltale gap in M) 

• Works for non-convex manifolds, but not 
ones that contain holes 

• Very sensitive to its parameter values 



Discussion: “local manifold learning” 
(Y. Bengio and M. Monperrus, 2005) 

• LLE, Isomap are local learning 

methods 

• They could fail when 

– Noise around manifold 

– High curvature of the manifold 

– High intrinsic dimension of the manifold 

– Presence of multiple manifolds with little 

data per manifold 



Autoassociative neural nets 
(M. A. Kramer, 1991) 

• Nonlinear capabilities of Isomap and 
LLE were not brought by inherent 
nonlinear models of data 

• Also, both methods use ‘local’ 
generalization 

• Apart from supervised learning for 
classification, neural nets have been 
used in the context of unsupervised 
learning for dimensionality reduction 



Autoassociative NN: continued 

• DR achieved by using 

net with same number 

of input and outputs 

• Optimize weights to 

minimize 

reconstruction error 

• Net tries to map each 

input vector onto itself 

(C. M. Bishop, 2006) 



Autoassociative NN: the intuition 

• Net is trained to 

reproduce its input 

at the output 

• So it packs as much 

information as 

possible into the 

central bottleneck 

250 neurons  

250 neurons  

 2   



Autoassociative NN: continued 

• Number of hidden units is smaller than 

number of inputs  

– there exists a reconstruction error 

• Determine network weights by 

minimizing the reconstruction sum-of-

squares error: 



Autoassociative NN and PCA 

• Here’s an interesting fact: 

• If hidden units have linear activation 
functions, 

• It can be shown that error function has a 
unique global minimum 

• At this minimum, the network performs a 
projection onto an M-dimensional 
subspace 

– spanned by the first M PCs of the data! 



Autoassociative NN and PCA: 

continued 

• Vector of weights leading into zi’s from a 

basis set which spans the principal 

subspace 

• These vectors need not be orthonormal 



Autoassociative NN and PCA: 

continued 

• Even with nonlinear activation functions 

for the hidden units,  

– the min error solution is again the projection 

onto the PC subspace  

– so there is no advantage in using 2-layer 

NNs to perform DR 

– standard PCA techniques based on SVD are 

better 



Autoassociative NN: nonlinear PCA 

• What we need is additional hidden 

layers -- consider the 4-layer net below 



Autoassociative NN: NLPCA 

• Training to learn the 
identity mapping is 
called  

– self-supervised 
backpropagation or  

– Autoassociation 

• After training, the 
combined net has no 
utility 

– And is divided into 
two single-hidden 
layer nets G and H 



NLPCA: discussion 

• Start with random weights, the two nets (G 
and H) can be trained together by 
minimizing the discrepancy between the 
original data and its reconstruction 

• Error function as before (sum-of-squares) 

– but no longer a quadratic function of net 
params. 

– risk of falling into local minima of err. func. 

– and burdensome computations 

• Dimension of subspace must be specified 
before training 



Autoencoder  
(G. E. Hinton and R. R. Salakhutdinov, 2006) 

• It was known since the 1980s that 

backpropagation through deep 

neural nets would be very effective 

for nonlinear dimensionality 

reduction -- subject to: 
– fast computers … OK 

– big data sets … OK 

– good initial weights … 



Autoencoder: continued 

• BP = backpropagation (CG methods, 
steepest descent, …) 

• Fundamental problems in training nets 
with many hidden layers (“deep” 
nets) with BP 
– learning is slow, results are poor 

• But, results can be improved 
significantly if initial weights are close 
to solution 



Autoencoder: pretraining 

• Treating each 

neighboring set of 

layers like an RBM  

– to approximate a good 

solution 

• RBM = Restricted 

Boltzmann Machine  

– will be the topic of an 

upcoming talk 

 



Autoencoder: continued 

• The learned features of 

one RBM are used as data 

for training the next RBM 

in the stack 

• The learning is 

unsupervised. 



Autoencoder: unrolling 

• After pretraining, the 

model is unfolded 

• Produces encoder and 

decoder networks that 

use the same weights 

• Now, we’ll go on to the 

global fine-tuning stage 



Autoencoder: fine-tuning 

• Now use BP of error 

derivatives to fine-tune ☺ 

• So we don’t run BP until 

we have good initial 

weights 

• With good initial weights, 

BP need only perform 

local search 



Autoencoder: results 

real              

data 

30-D       

deep auto 

30-D 

logistic PCA 

30-D         

PCA 



DR: taxonomy 

• Here we considered  

– linear vs. nonlinear (model of data) 

• There are many other possible 
categorizations, to name a few: 

– local vs. non-local (generalization) 

– single vs. multiple (coordinate system) 

–unsupervised vs. supervised 

–data-aware vs. data-oblivious 

– exact vs. approximate (optimization) 



DR: taxonomy (L. van der Maaten, 2009) 

DR 

convex 

full spectral 

Euclidean 
distance 

PCA 

geodesic 
distance 

Isomap 

sparse spectral 

reconstruction 
weights 

LLE 

graph Laplacian 

LE 

non-convex 



DR: taxonomy (J. A. Lee, and M. Verleysen, 2007) 

 

DR 

distance-preserving 

(isometry) 

spatial 
distances 

MDS 

graph 
distances 

Isomap, 
CDA 

other 

kPCA, SDE 

topology-preserving 

(conformal map) 

predefined 
lattice 

SOM, GTM 

data-driven 
lattice 

LLE, LE, 
Isotop 



 

Note: conformal map (Wikipedia) 

 

A function that 

preserves 

angles. 

Pairs of lines 

intersecting at 90˚ 

to pairs of curves 

intersecting at 90˚. 



 

Discussion: out-of-sample generalization 

(Y. Bengio et al., 2003) 

 
• The model of PCA is continuous 

• An implicit mapping is defined:  

•  X = WTY 

• � generalization to new points is easy 

• But, MDS, Isomap and LLE provide 

an explicit mapping 

• (xn, yn) 



Discussion: dataset size 

• Large datasets: N>2000 
– Time and space complexity of NLDR methods at 
least O(N2) 

– Need to resample available data 
• using k-means for example 

• Medium: 200<N≤2000 
– OK 

• Small: N≤200 
– Insufficient to identify parameters 

– Use PCA/MDS 



Discussion: dataset dimensionality 

• Very high: D>50 
– NLDR fails b/c of COD 

– First apply PCA/MDS/RP for hard DR 

• can provide robustness to noise 

• High: 5<D≤50 
– COD still exists, use at your own risk 

• Low: D≤5 
– Apply with confidence 



Discussion: dataset intrinsic 

dimensionality 

• Target dim >> intrinsic dim 
– PCA/MDS/RP perform well 

• Target dim ≥ intrinsic dim 
– NLDR provides good results 

• Target dim < intrinsic dim 
– Use NLDR at your own risk 

• results are meaningless b/c forced 

– Nonspectral methods don’t converge 

• spectral methods solve an eigenproblem 
irrespective of target dimensionality 



Discussion: goal of DR 

• DR is a preprocessing step 
– and some information is lost 

• You want to preserve what is 

important for the next step 

– whether it’s classification or clustering 

• The method and metric you use 

should be in line with the next task 



One final note 

• Motivation behind DR was to remove 

COD 

• But the mentioned NLDR methods 

fall prey to COD themselves 

– when intrinsic dimensionality is higher than 

4 or 5 

 

 



Looking ahead: future sessions 

• We’ll be talking about 
– kernel  methods 

– SVM  
• (sparse kernel machines) 

– statistical learning theory  
• (PAC learning and VC dimension) 

• And after that, we’ll talk about 
– deep learning methods 

• as a feature extraction method that allows us to deal with 
the curse of dimensionality 

• We’ll try to put it all in the context of 
information retrieval  
– specifically multimedia information retrieval 

– e.g. CBIR, MIR 
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Thank you for your attention. 
 


