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Online social networks (OSNs)

I Facebook (undirected network)

I Twitter, Instagram (directed networks)

I why study them?
I interesting for social scientists, marketers

I look for online communities, influential actors, spread of
information

I design network algorithms for these studies
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Why model online social networks networks?

I to test an algorithm, we generate data
I to study social networks we generate graphs

I can be used to study network evolution over time
I real-data at that scale might be unavailable, difficult to access
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Random number generation

I common idea: generate random numbers

I similar ideas may be used generate a random binary matrix:
each entry receives a 0 or 1 according to a fixed distribution

I random matrices correspond to adjacency matrices of
directed graphs

I later we see that this is the Erdős-Rényi model for random
graphs
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Properties of OSNs

I Large scale. many nodes and many edges

I Small world. low distances between nodes, and high local
clustering

I Power law. exhibit a degree distribution that is heavy tail
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Background on random graphs

I definitive work of Erdős and Rényi (1959):
the Erdős-Rényi or the binomial random graph

I denoted G(n, p)
graph of order n
edges added independently with probability p, p ∈ (0, 1)

I random geometric graph (Penrose, 2003)
I denoted G(n, r)
n vertices u.a.r. on a unit hypercube
an edge exists between two vertices if distance less than r
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(a) Points placed uniformly at random. (b) Edges of a random geometric graph.

Figure : Random geometric graph in two dimensions (Diaz, 2008).
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(a) Erdős-Rényi graph. (b) Random geometric graph.

Figure : A comparison of the Erdős-Rényi and random geometric graphs.
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MGEO-P(α, β,m, p)
Bonato, Gleich, Kim, Mitsche, Pralat, Tian, and Young (2014+)

“Memoryless”, “Geometric” and “protean”

I α ∈ (0, 1) is the attachment strength,

I β ∈ (0, 1− α) is the density parameter,

I m ∈ N is the dimension of the graph, and

I p ∈ (0, 1] is the link probability.
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MGEO-P model

Given an initial configuration of n vertices on a unit hypercube

1. fix a permutation σ on {1, · · · , n}
I where σ(i) represents the rank of the ith oldest node

2. for each pair i > j, the edge {i, j} is present iff
I node i is in the ball of volume σ(j)−αn−β
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Figure : MGEO-P graph with n = 250 in two dimensions (Bonato,
Gleich, Kim, Mitsche, Pralat, Tian, and Young, 2014+)
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How good is your model?

I An important question: which model better fits the data?

I Isomorphism is too strong a similarity measure
one obstacle is that the graphs are massive

I Instead consider graph properties: global and local
I global: power law exponent
I local: graphlet counts
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(a) M-GEOP graph.
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(b) G(n, r) graph.

Figure : Log-log plot of the degree distributions for the M-GEOP and the
G(n, r) models.
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Local properties

I Many models share the power law property. Which one is a
better fit for the FB100 data set?

I Consider graphlet counts for small order graphs (3 or 4)
these capture local behaviour

I Wernicke’s algorithm (Wernicke and Rasche, 2006)

1. sample the graph
2. search for graphlets in the sample and return a count
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(a) tri I (b) tri II (c) quad I (d) quad II

(e) quad III (f) quad IV (g) quad V (h) quad VI

Figure : The graphlets of order 3 and 4.
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Experiments

I Data: Facbook100 dataset
I snapshot Facebook networks of 100 colleges from Sept. 2005

I Algorithm: For each graph in FB100

1. extract its parameters:
order, size, power law exponent, diameter

2. Extract its graphlet count
3. Generate samples from the M-GEOP model and samples from

the G(n, r) model
4. Percolate if necessary
5. Extract graphlet counts for every sample
6. Train classifier on graphlet count representation of the samples
7. Use classifier to classify each FB graph
8. Output whether G(n, r) or M-GEOP better fits the graph
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Table : Statistics of the Facebook100 data set.

Name Order Size PL exp Eff Diam α β m

Caltech36 769 16656 7.00 3.81 0.17 0.27 5
Reed98 962 18812 4.38 3.88 0.30 0.17 5
Harverford76 1446 59589 7.00 3.63 0.17 0.23 5
Simmons81 1518 32988 4.74 3.92 0.27 0.22 5
Swarthmore42 1659 61050 5.60 3.77 0.22 0.20 6
Amherst41 2235 90954 5.64 3.81 0.22 0.21 6
Bowdoin47 2252 84387 5.80 3.81 0.21 0.23 6
Hamilton46 2314 96394 4.63 3.79 0.28 0.15 6
...
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Table : Graphlet counts for the Facebook100 data set.

Name G1 G2 G3 G4 G5 G6 G7 G8

Caltech36 13 11 17 17 16 13 14 13
Reed98 13 11 17 18 17 14 14 12
Haverford76 15 13 19 20 18 16 16 14
Simmons81 14 12 18 18 17 14 15 13
Swarthmore42 15 13 19 20 19 16 16 14
Amherst41 15 13 20 20 19 16 17 15
Bowdoin47 15 13 20 20 19 16 17 15
Hamilton46 16 13 20 20 19 16 17 15
...
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Table : Classification results where A=mgeop, B=gnr

Name Class P (A) P (B)

Caltech36 mgeop 11 17
Reed98 mgeop 11 17
Haverford76 mgeop 13 19
Simmons81 mgeop 12 18
Swarthmore42 mgeop 13 19
Amherst41 mgeop 13 20
Bowdoin47 mgeop 13 20
Hamilton46 mgeop 13 20
...
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Conclusion and future work

Result:

I samples belong to the MGEO-P class with high probability

Next steps:

I find ’best’ classifier with cross-validation

I compare MGEO-P against other sophisticated models

I develop library to test stochastic models for any data set
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