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Introduction

The Setting

I We have the linear inverse problem

b = Ax (1)

where b ∈ Rm,x ∈ Rp,A ∈ Rm×p; x is unknown.

I Many problems in ML are linear inverse problems, for e.g.,

I regression and classification: y = Xa, a is unknown;

I sparse coding: x = Da, a is unknown;

I dictionary learning: x = Da, both a and D are unknown.
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Introduction

Solution
Take I

x = A−1b (2)

I What’s the problem here?
I A is almost never invertible in our problems:

I needs to be square

I needs to have full column rank
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Introduction

Ill-posedness

I Case I
I If m = p or m > p, we say that the system of equations is

overdetermined.

I In this case, the solution to (1) does not exist.

I Case II
I If m < p, the system is underdetermined,

I and there exists infinitely many solutions.
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Introduction

Solution
Case I, Take II

I Instead of the equations, b = Ax, only minimize the residual,

min
x
‖b−Ax‖22 (3)

I where (3) yields an approximate solution to (1), i.e.,

x = (ATA)−1ATb

I The solution exists if ATA is invertible, i.e.,
I A must have full column rank

I o.w., (3) is no better than (1), which is the case for Case II.
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Regularization

Schemes
I Regularize to incorporate a priori assumptions about the size

and smoothness of the solution.
I for e.g. by using the `2 norm as the measure of size

I Regularization is done using one of the following schemes:

min
1

2
‖b−Ax‖22 s.t. ‖x‖1 ≤ T (4)

min ‖x‖1 s.t. ‖b−Ax‖22 ≤ ε (5)

min
1

2
‖b−Ax‖22 + λ‖x‖1 (Lagrangian form) (6)

I Note that the schemes are equivalent in theory but not in
practice, since relations between T, ε, and λ are unknown.
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Regularization

Solution
Take III

I Regularize, i.e.,

min
1

2
‖b−Ax‖22 + λ‖x‖22 (7)

I now (7) has the unique solution,

x∗ = (ATA + λI)−1ATb.

I Note that ATA + λI is nonsingular even when ATA is
singular.
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Sparsity

When m� p

I Standard procedure is to constrain with sparsity.

I To measure sparsity, we introduce the `0 quasi-norm,

‖x‖0 = #{i : xi 6= 0}. (8)

I The problem becomes,

min ‖x‖0 s.t. b = Ax. (9)

I Because of the combinatorial aspect of the `0 norm, the
problem (9) is intractable.
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Sparsity

Solution
Take I: Convex Relaxation

I Basis pursuit (Chen et al., 1995)

min ‖x‖1 s.t. b = Ax. (10)

I (10) is a linear program for which a tractable algorithm exists,
in this case:

I primal-dual interior point method

I solves the approximate problem, exactly

I To allow for some noise, Chen et al. proposed basis pursuit
de-noising

1

2
‖b−Ax‖22 + λ‖x‖1. (11)

Pardis Noorzad Amirkabir University of Technology

Sparse Coding and Dictionary Learning



Inverse Problems Sparse Coding Dictionary Learning

Sparsity

Solution
Take II: Greed

I Greedy algorithms like matching pursuit (Mallat and Zhang,
1993) solve the following problem approximately.

min
1

2
‖b−Ax‖22 s.t. ‖x‖0 ≤ s. (12)

I where s is the desired sparsity of the solution.

I (12) can’t be solved exactly since it is NP-hard.

I However, greedy methods like MP, OMP, LARS, etc., can
result in good local optima.
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`p norms

Power family of penalties
`p norms raised to the pth power

‖x‖pp =

(∑
i

|xi|p
)

(13)

I For 1 ≤ p <∞, (13) is convex.

I 0 < p ≤ 1, is the range of p useful for measuring sparsity.
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Figure: As p goes to 0, |x|p becomes the indicator function and |x|p
becomes a count of the nonzeros in x (Bruckstein et al., 2009).
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Definition

Sparse representation

x = Da

I The dictionary should be redundant:

dimensionality of input� number of columns of the dictionary

I Use the algorithms that we talked about, e.g., OMP or LARS.
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Feature Learning

Unsupervised feature learning
Application to image classification

x = Da

I An example is the recent work by Coates and Ng (2011).
I where x is the input vector

I could be a vectorized image patch, or a SIFT descriptor

I a is the higher-dimensional sparse representation of x

I D is usually learned—we’ll talk about it later
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Figure: Image classification (Coates et al., 2011).
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Sparse Representation Classification

Multiclass classification
(Wright et al., 2009)

x = Da

I x is a test sample

I D = [x1|x2| . . . |xp] contains training samples as its columns

I δi(a) gives a new vector whose nonzero entries are those in a
associated with class i

i∗ = arg min ‖x−Dδi(a)‖22.
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Definition and Algorithms

Dictionary learning as matrix factorization

min
D∈D
A∈A

1

n

n∑
i=1

[1

2
‖xi −Dai‖22 + λΩ(ai)

]
=

min
D∈D
A∈A

[1

2
‖X−DA‖2F + λΩ

′
(A)

]
I Ω(.) is a “sparsity-inducing” norm
I Ω

′
(A) = 1

n

∑n
i=1 Ω(ai)

I X = [x1, . . . ,xn] ∈ Rm×n: samples
I A = [a1, . . . ,an] ∈ Rp×n: sparse codes for each sample

I ‖X‖F =
(∑m

i=1

∑n
i=1 x

2
ij

) 1
2

: Frobenius norm
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Definition and Algorithms

Classical matrix factorization

PCA

min
D∈Rm×p

A∈Rp×n

1

2
‖X−DA‖2F s.t. DTD = Im and AAT is diagonal

k-means

min
D∈Rm×k

A∈{0,1}k×n

1

2
‖X−DA‖2F s.t.

k∑
j=1

aij = 1, for all i ∈ {1, . . . , p}
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Definition and Algorithms

Algorithms
MF with `1 regularization

min
D∈D

A∈Rm×p

1

n

n∑
i=1

[
1

2
‖xi −Dai‖22 + λ‖ai‖1

]

I Optimization is not jointly convex in (D,A)

I BUT, is convex w.r.t. each when the other is fixed

I use LARS and gradient descent interchangeably, i.e.,

separate sparse coding and dictionary learning steps
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Image De-noising

De-noising

min
x∈Rn

1

2
‖y − x‖22 + ψ(x)

I data fitting term + regularization term such that estimate
respect image model

min
D∈D

A∈Rm×p

1

n

n∑
i=1

[
1

2
‖xi −Dai‖22 + λ‖ai‖1

]

x =
1

m

n∑
i=1

RiDai
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Image Restoration

Inpainting

min
D∈D

A∈Rm×p

1

n

n∑
i=1

[
1

2
‖(xi −Dai)‖22 + λ‖ai‖1

]

I can only handle holes that are smaller than the patch size
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Figure: Damaged image (Mairal, 2010).



Figure: Restored image (Mairal, 2010).
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