TV Denoising	L_1 Regularization	Split Bregman Method	
00 00		00 00 000	00 00

The Split Bregman Method for L_1 Regularized Problems: An Overview

Pardis Noorzad¹

¹Department of Computer Engineering and IT Amirkabir University of Technology

Khordad 1389

TV Denoising	L_1 Regularization	Split Bregman Method	
00 00		00 00 000	00 00

1 Introduction

2 TV Denoising

The ROF Model Iterated Total Variation

3 L_1 Regularization

Easy vs. Hard Problems

4 Split Bregman Method

Split Bregman Formulation Bregman Iteration Applying SB to TV Denoising

5 Results

Fast Convergence Acceptable Intermediate Results

Introduction			
	00 00	00 00 000	00 00

Image Restoration and Variational Models

- Fundamental problem in image restoration: denoising
- Denoising is an important step in machine vision tasks
- Concern is to preserve important image features
 - edges, texture
 - while removing noise
- · Variational models have been very successful

Introduction	TV Denoising	L_1 Regularization	Split Bregman Method	
	00 00		00 00 000	00 00

TV-based Image Restoration

- Total variation based image restoration models first introduced by Rudin, Osher, and Fatemi [ROF92]
- An early example of PDE based edge preserving denoising
- Has been extended and solved in a variety of ways
- Here, the Split Bregman method is introduced

TV Denoising	L_1 Regularization	Split Bregman Method	
00 00		00 00 000	00 00

Denoising

Decomposition

f = u + v

- $f:\Omega \to \mathbb{R}$ is the noisy image
- Ω is the bounded open subset of \mathbb{R}^2
- *u* is the true signal
- $v \sim N(0, \sigma^2)$ is the white Gaussian noise

TV Denoising		
00 00	00 00 000	00 00

Conventional Variational Model

Easy to solve — results are dissapointing

$$\min \int_{\Omega} (u_{xx} + u_{yy})^2 dx dy$$

such that

$$\int_{\Omega} u dx dy = \int_{\Omega} f dx dy$$

(white noise is of zero mean)

$$\int_0 \frac{1}{2} (u-f)^2 dx dy = \sigma^2,$$

(a priori information about v)

	TV Denoising	L_1 Regularization	Split Bregman Method	
	• 0 00		00 00 000	00 00
The POE Model				

The ROF Model

Difficult to solve - successful for denoising

$$\min_{u \in BV(\Omega)} \{ \|u\|_{BV} + \lambda \|f - u\|_2^2 \}$$

- $\lambda > 0$: scale parameter
- $BV(\Omega)$: space of functions with **bounded variation** on Ω
- ||.||: BV seminorm or total variation given by,

$$\|u\|_{\rm BV} = \int_{\Omega} |\nabla u|$$

	TV Denoising	L_1 Regularization	Split Bregman Method	
	00 00		00 00 000	00 00
The DOE Medel				

BV seminorm

- It's use is essential allows image recovery with edges
- What if first term were replaced by $\int_{\Omega} |\nabla u|^p$?
 - Which is both differentiable and strictly convex
- No good! For p>1, its derivative has **smoothing effect** in the optimality condition
- For **TV** however, the operator is degenerate, and affects only **level lines** of the image

	TV Denoising	L_1 Regularization	Split Bregman Method	
	00 00		00 00 000	00 00
Iterated Total Variation	n			

Iterative Regularization

Adding back the noise

- In the ROF model, u f is treated as **error** and discarded
- In the decomposition of f into signal u and additive noise v
 - There exists some **signal** in v
 - And some smoothing of textures in *u*
- Osher et al. [OBG⁺05] propose an iterated procedure to **add the noise back**

	TV Denoising	L_1 Regularization	Split Bregman Method	
	00 0●		00 00 000	00 00
Iterated Total Variation				

Iterative Regularization

The iteration

Step 1: Solve the ROF model to obtain:

$$u_1 = \operatorname*{arg\,min}_{u \in BV(\Omega)} \left\{ \int |\nabla u| + \lambda \int (f - u)^2 \right\}$$

Step 2: Perform a correction step:

$$u_{2} = \operatorname*{arg\,min}_{u \in BV(\Omega)} \left\{ \int |\nabla u| + \lambda \int (f + v_{1} - u)^{2} \right\}$$

 $(v_1 \text{ is the noise estimated by the first step, } f = u_1 + v_1)$

TV Denoising	L_1 Regularization	Split Bregman Method	
00 00		00 00 000	00 00

Definition

 L_1 regularized optimization

 $\min_u \|\Phi(u)\|_1 + H(u)$

- Many important problems in imaging science (and other problems in engineering) can be posed as L₁ regularized optimization problems
- $\|.\|_1$: the L_1 norm
- both $\|\Phi(u)\|_1$ and H(u) are convex functions

	TV Denoising	L ₁ Regularization	Split Bregman Method	
	00 00	0000	00 00 000	00 00
Easy vs. Hard Problem				

$\label{eq:argmin} \underset{u}{\arg\min} \|Au - f\|_2^2 \quad \text{differentiable}$ $\label{eq:argmin} \underset{u}{\arg\min} \|u\|_1 + \|u - f\|_2^2 \quad \text{solvable by shrinkage}$

	TV Denoising	L_1 Regularization	Split Bregman Method	
	00 00	0000	00 00 000	00 00
Easy vs Hard Problem	16			

Shrinkage or Soft Thresholding

Solves the L_1 problem of the form (H(.) is convex and differentiable):

$$\underset{u}{\arg\min} \mu \|u\|_1 + H(u)$$

Based on this iterative scheme

$$u^{k+1} \to \operatorname*{arg\,min}_{u} \mu \|u\|_{1} + \frac{1}{2\delta^{k}} \|u - (u^{k} - \delta^{k} \nabla H(u^{k}))\|^{2}$$

	TV Denoising	L_1 Regularization	Split Bregman Method	
	00 00	0000	00 00 000	00 00
Easy vs. Hard Problem	15			

Shrinkage Continued

Since unknown u is **componentwise separable**, each component can be independently obtained:

$$u_i^{k+1} = \operatorname{shrink}((u^k - \delta^k \nabla H(u^k))_i, \mu \delta^k), \ i = 1, \dots, n,$$

$$\operatorname{shrink}(y,\alpha) := \operatorname{sgn}(y) \max\{|y| - \alpha, 0\} = \begin{cases} y - \alpha, & y \in (\alpha, \infty), \\ 0, & y \in [-\alpha, \alpha], \\ y + \alpha, & y \in (-\infty, -\alpha). \end{cases}$$

	TV Denoising	L ₁ Regularization	Split Bregman Method	
	00 00	0000	00 00 000	00 00
Easy vs. Hard Problems				

Hard Instances

$$\arg\min_{u} \|\Phi(u)\|_{1} + \|u - f\|_{2}^{2}$$
$$\arg\min_{u} \|u\|_{1} + \|Au - f\|_{2}^{2}$$

What makes these problems hard? The **coupling** between the L_1 and L_2 terms.

	TV Denoising	L ₁ Regularization	Split Bregman Method	
	00 00		• 0 00 000	00
6 III 6 E I				

Split the L_1 and L_2 components

To solve the general regularization problem:

$$\underset{u}{\arg\min} \|\Phi(u)\|_1 + H(u)$$

Introduce $d = \Phi(u)$ and solve the constrained problem

$$\mathop{\arg\min}_{u,d} \|d\|_1 + H(u) \text{ such that } d = \Phi(u)$$

	TV Denoising	L_1 Regularization	Split Bregman Method	
	00 00		00 00 000	00
CIND				

Split the L_1 and L_2 components Continued

Add an L_2 penalty term to get an unconstrained problem

$$\underset{u,d}{\operatorname{arg\,min}} \|d\|_1 + H(u) + \frac{\lambda}{2} \|d - \Phi(u)\|^2$$

- Obvious way is to use the penalty method to solve this
- However, as $\lambda_k \to \infty$, the condition number of the Hessian approaches infinity, making it impractical to use fast iterative methods like Conjugate Gradient to approximate the inverse of the Hessian.

	TV Denoising	L_1 Regularization	Split Bregman Method	
	00 00			00 00
D II II				

Analog of adding the noise back

The optimization problem is solved by iterating

$$(u^{k+1}, d^{k+1}) = \operatorname*{arg\,min}_{u,d} \|d\|_1 + H(u) + \frac{\lambda}{2} \|d - \Phi(u) - b^k\|^2$$
$$b^{k+1} = b^k + (\Phi(u) - d^k)$$

The iteration in the first line can be done separately for u and d.

	TV Denoising	L_1 Regularization	Split Bregman Method	
	00 00			00 00
Bregman Iteration				

3-step Algorithm

 $\begin{aligned} &\text{Step 1: } u^{k+1} = \arg\min_u H(u) + \frac{\lambda}{2} \|d^k - \Phi(u) - b^k\|_2^2 \\ &\text{Step 2: } d^{k+1} = \arg\min_d \|d\|_1 + \frac{\lambda}{2} \|d^k - \Phi(u) - b^k\|_2^2 \\ &\text{Step 3: } b^{k+1} = b^k + \Phi(u^{k+1}) - d^{k+1} \end{aligned}$

- Step 1 is now a differentiable optimization problem, we'll solve with **Gauss Seidel**
- Step 2 can be solved efficiently with shrinkage
- Step 3 is an explicit evaluation

	TV Denoising	L_1 Regularization	Split Bregman Method	
	00 00		00 00 ●00	00 00
Applying SB to TV De	enoising			

Anisotropic TV

$$\underset{u}{\arg\min} |\nabla_{x}u| + |\nabla_{y}u| + \frac{\mu}{2} ||u - f||_{2}^{2}$$

	TV Denoising	L ₁ Regularization	Split Bregman Method	
	00 00		00 00 000	00 00
Applying SB to TV De	enoising			

Anisotropic TV

The steps

Step 1:
$$u^{k+1} = G(u^k)$$

Step 2: $d_x^{k+1} = \text{shrink}(\nabla_x u^{k+1} + b_x^k, \frac{1}{\lambda})$
Step 3: $d_y^{k+1} = \text{shrink}(\nabla_y u^{k+1} + b_y^k, \frac{1}{\lambda})$
Step 4: $b_x^{k+1} = b_x^k + (\nabla_x u - x)$
Step 5: $b_y^{k+1} = b_y^k + (\nabla_y u - y)$

- ${\cal G}(u^k):$ result of one Gauss-Seidel sweep for the corresponding ${\cal L}_2$ optimization
- This algorithm is cheap each step is a few operations per pixel

	TV Denoising	L_1 Regularization	Split Bregman Method	
	00 00		00 00 000	00 00
Applying SB to TV De	enoising			

Isotropic TV With similar steps

$$\underset{u}{\arg\min} \sum_{i} \sqrt{(\nabla_{x}u)_{i}^{2} + (\nabla_{y}u)_{i}^{2}} + \frac{\mu}{2} \|u - f\|_{2}^{2}$$

TV Denoising	L_1 Regularization	Split Bregman Method	Results
00 00		00	• 0 00
		000	

Fast Convergence

Split Bregman is fast

Intel Core 2 Duo desktop (3 GHz), compiled with g++

Anisotropic		
Image	Time/cycle (sec)	Time Total (sec)
256 imes 256 Blocks	0.0013	0.068
512×512 Lena	0.0054	0.27

Isotropic		
Image	Time/cycle (sec)	Time Total (sec)
256 imes 256 Blocks	0.0018	0.0876
512 imes 512 Lena	0.011	0.55

	TV Denoising	L_1 Regularization	Split Bregman Method	Results
	00 00		00 00 000	00 00
East Convergence				

Split Bregman is fast Compared to Graph Cuts

Image	Split Bregman	Graph Cuts(4 point)	Graph Cuts(16 point)
256×256 Blocks	0.0732	0.214	0.468
512×512 Lena	0.2412	0.709	1.51

	TV Denoising	L_1 Regularization	Split Bregman Method	Results
	00 00		00 00 000	00 ● 0
A second building on the base for				

Acceptable Intermediate Results

Intermediate images are smooth

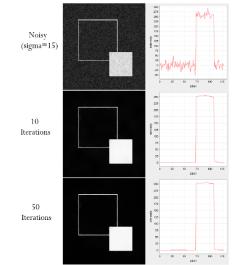
Noisy (sigma=25)

10 Iterations

TV Denoising	L_1 Regularization	Split Bregman Method	Results
00 00		00 00 000	00

Acceptable Intermediate Results

Intermediate images are smooth



References

- Tom Goldstein and Stanley Osher, *The split bregman method for l1-regularized problems*, SIAM Journal on Imaging Sciences **2** (2009), no. 2, 323–343.
- Stanley Osher, Martin Burger, Donald Goldfarb, Jinjun Xu, and Wotao Yin, An iterative regularization method for total variation-based image restoration, Multiscale Modeling and Simulation 4 (2005), 460–489.

Leonid I. Rudin, Stanley Osher, and Emad Fatemi, *Nonlinear total variation based noise removal algorithms*, Physica D **60** (1992), no. 1-4, 259–268.

Thank you for your attention. Any questions?