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Image Restoration and Variational Models

• Fundamental problem in image restoration: denoising

• Denoising is an important step in machine vision tasks

• Concern is to preserve important image features
• edges, texture

while removing noise

• Variational models have been very successful
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TV-based Image Restoration

• Total variation based image restoration models first introduced by
Rudin, Osher, and Fatemi [ROF92]

• An early example of PDE based edge preserving denoising

• Has been extended and solved in a variety of ways

• Here, the Split Bregman method is introduced

The Split Bregman Method for L1 Regularized Problems: An Overview Pardis Noorzad



Introduction TV Denoising L1 Regularization Split Bregman Method Results

Denoising

Decomposition

f = u+ v

• f : Ω→ R is the noisy image

• Ω is the bounded open subset of R2

• u is the true signal

• v ∼ N(0, σ2) is the white Gaussian noise
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Conventional Variational Model
Easy to solve — results are dissapointing

min

∫
Ω

(uxx + uyy)2dxdy

such that ∫
Ω

udxdy =

∫
Ω

fdxdy

(white noise is of zero mean)∫
0

1

2
(u− f)2dxdy = σ2,

(a priori information about v)
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The ROF Model

The ROF Model
Difficult to solve — successful for denoising

min
u∈BV(Ω)

{‖u‖BV + λ‖f − u‖22}

• λ > 0: scale parameter

• BV(Ω): space of functions with bounded variation on Ω

• ‖.‖: BV seminorm or total variation given by,

‖u‖BV =

∫
Ω

|∇u|
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The ROF Model

BV seminorm

• It’s use is essential — allows image recovery with edges

• What if first term were replaced by
∫

Ω
|∇u|p?

• Which is both differentiable and strictly convex

• No good! For p > 1, its derivative has smoothing effect in the
optimality condition

• For TV however, the operator is degenerate, and affects only level
lines of the image
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Iterated Total Variation

Iterative Regularization
Adding back the noise

• In the ROF model, u− f is treated as error and discarded

• In the decomposition of f into signal u and additive noise v
• There exists some signal in v
• And some smoothing of textures in u

• Osher et al. [OBG+05] propose an iterated procedure to add the
noise back
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Iterated Total Variation

Iterative Regularization
The iteration

Step 1: Solve the ROF model to obtain:

u1 = arg min
u∈BV (Ω)

{∫
|∇u|+ λ

∫
(f − u)2

}
Step 2: Perform a correction step:

u2 = arg min
u∈BV (Ω)

{∫
|∇u|+ λ

∫
(f + v1 − u)2

}
(v1 is the noise estimated by the first step, f = u1 + v1)
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Definition
L1 regularized optimization

min
u
‖Φ(u)‖1 +H(u)

• Many important problems in imaging science (and other problems in
engineering) can be posed as L1 regularized optimization problems

• ‖.‖1: the L1 norm

• both ‖Φ(u)‖1 and H(u) are convex functions
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Easy vs. Hard Problems

Easy Instances

arg min
u

‖Au− f‖22 differentiable

arg min
u

‖u‖1 + ‖u− f‖22 solvable by shrinkage
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Easy vs. Hard Problems

Shrinkage
or Soft Thresholding

Solves the L1 problem of the form (H(.) is convex and differentiable):

arg min
u

µ‖u‖1 +H(u)

Based on this iterative scheme

uk+1 → arg min
u

µ‖u‖1 +
1

2δk
‖u− (uk − δk∇H(uk))‖2
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Easy vs. Hard Problems

Shrinkage
Continued

Since unknown u is componentwise separable, each component can be
independently obtained:

uk+1
i = shrink((uk − δk∇H(uk))i, µδ

k), i = 1, . . . , n,

shrink(y, α) := sgn(y) max{|y| − α, 0} =


y − α, y ∈ (α,∞),

0, y ∈ [−α, α],

y + α, y ∈ (−∞,−α).
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Easy vs. Hard Problems

Hard Instances

arg min
u

‖Φ(u)‖1 + ‖u− f‖22

arg min
u

‖u‖1 + ‖Au− f‖22

What makes these problems hard?
The coupling between the L1 and L2 terms.
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Split Bregman Formulation

Split the L1 and L2 components

To solve the general regularization problem:

arg min
u

‖Φ(u)‖1 +H(u)

Introduce d = Φ(u) and solve the constrained problem

arg min
u,d

‖d‖1 +H(u) such that d = Φ(u)
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Split Bregman Formulation

Split the L1 and L2 components
Continued

Add an L2 penalty term to get an unconstrained problem

arg min
u,d

‖d‖1 +H(u) +
λ

2
‖d− Φ(u)‖2

• Obvious way is to use the penalty method to solve this

• However, as λk →∞, the condition number of the Hessian
approaches infinity, making it impractical to use fast iterative
methods like Conjugate Gradient to approximate the inverse of the
Hessian.
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Bregman Iteration

Analog of adding the noise back

The optimization problem is solved by iterating

(uk+1, dk+1) = arg min
u,d

‖d‖1 +H(u) +
λ

2
‖d− Φ(u)− bk‖2

bk+1 = bk + (Φ(u)− dk)

The iteration in the first line can be done separately for u and d.
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Bregman Iteration

3-step Algorithm

Step 1: uk+1 = arg minuH(u) + λ
2 ‖d

k − Φ(u)− bk‖22

Step 2: dk+1 = arg mind ‖d‖1 + λ
2 ‖d

k − Φ(u)− bk‖22

Step 3: bk+1 = bk + Φ(uk+1)− dk+1

• Step 1 is now a differentiable optimization problem, we’ll solve with
Gauss Seidel

• Step 2 can be solved efficiently with shrinkage

• Step 3 is an explicit evaluation
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Applying SB to TV Denoising

Anisotropic TV

arg min
u

|∇xu|+ |∇yu|+
µ

2
‖u− f‖22
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Applying SB to TV Denoising

Anisotropic TV
The steps

Step 1: uk+1 = G(uk)

Step 2: dk+1
x = shrink(∇xuk+1 + bkx,

1
λ )

Step 3: dk+1
y = shrink(∇yuk+1 + bky ,

1
λ )

Step 4: bk+1
x = bkx + (∇xu− x)

Step 5: bk+1
y = bky + (∇yu− y)

• G(uk): result of one Gauss-Seidel sweep for the corresponding L2

optimization

• This algorithm is cheap — each step is a few operations per pixel
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Applying SB to TV Denoising

Isotropic TV
With similar steps

arg min
u

∑
i

√
(∇xu)2

i + (∇yu)2
i +

µ

2
‖u− f‖22
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Fast Convergence

Split Bregman is fast
Intel Core 2 Duo desktop (3 GHz), compiled with g++
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Fast Convergence

Split Bregman is fast
Compared to Graph Cuts
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Acceptable Intermediate Results

Intermediate images are smooth
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Acceptable Intermediate Results

Intermediate images are smooth
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Thank you for your attention. Any questions?
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